Многогранники и тела вращения в природе. Многогранники и их виды. Пересечение пирамиды линией и призмой

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекция 4 Многогранники и тела вращения

  • Содержание
  • 1. Призма и пирамида
  • 2. Построение правильных пирамид и призм
  • 3. Сечение прямоугольной трубы
  • 4. Построение сечения пирамиды
  • 5. Пересечение пирамиды линией и призмой
  • 6. Последовательность построения 2-х многогранников
  • 7. Построение сечения цилиндра
  • 8. Построение развертки цилиндра
  • 9. Возможные сечения конуса
  • 10. Построение сечения конуса и его развертки
  • 11. Построение сечения шара
  • 12. Построение сечений тора

1. Призма и пирамида

Призматическая поверхность неограниченной длины на чертеже может быть изображена проекциями фигуры, полученной при пересечении боковых граней призмы плоскостью, и проекциями ребер призмы. Пересекая призматическую поверхность двумя параллельными между собой плоскостями, получают основания призмы. На чертеже основания призмы удобно располагать параллельно плоскости проекций. Чертеж призмы с проекциями оснований А"В"С", А"В"С и D " E " F ", D " E " F " , параллельных плоскости р 1 , приведен на

рис.1 (слева). Одноименные проекции ребер призмы параллельны между собой. пирамида призма многогранник конус

Для изображения поверхности пирамиды на чертеже используют фигуру сечения боковых граней пирамиды плоскостью и точку из пересечения - вершину. На чертеже пирамиду задают проекциями ее основания, ребер и вершины, усеченную пирамиду - проекциями обоих оснований и ребер.

Изображая пирамиду, удобно ее основание располагать параллельно плоскости проекций.

На рис. 1 (справа) приведен чертеж неправильной треугольной пирамиды с проекциями А", А" вершины и основанием, проекции которого D " B " C " и D " B " C , лежащим в плоскости проекций р 1 .

2. Построение правильных пирамид и призм

Изображения призм и пирамид приведены на рис.2. На приведенных чертежах ребра проецируются в виде отрезков прямых или в виде точек. Например, фронтальные и профильные проекции боковых ребер призм и пирамид - отрезки прямых. Горизонтальные проекции тех же боковых ребер призм на рис. 2 а, б - точки. Профильные проекции ребер оснований призм - точки 2" (3""), (5""), 6"" на рис. 2 а, точка 1"", (3"") на рис. 2, б, в.

Грани призм, пирамид, которые перпендикулярны плоскостям проекций, проецируются на них в виде отрезков прямых линии. Так, например, боковые грани призм (рис. 2 а, б) на горизонтальной проекции изображаются в виде отрезков прямых линий, образующих шестиугольник, в виде отрезков прямых линий проецируются на профильную плоскость проекций передняя и задняя грани призмы на рис. 2, а, задняя грань призмы и пирамиды на рис. 6.4, б, в.

Основания изображенных тел проецируются в отрезок прямой линии на фронтальную и профильную плоскости проекций.

Построение недостающих проекций точек на поверхности призм и пирамид по заданным фронтальным проекциям на рис. 2 показано стрелками и соответствующими координатами.

Профильные проекции А "", С" построены с помощью координат у А и у С , определяемых по горизонтальным проекциям.

Горизонтальная D " и профильная D "" проекции точки D на грани А -- 1 --2 пирамиды

(рис. 2, в) построены с помощью 2"4", 2""4"" отрезка прямой на этой грани. Аналогично, с помощью профильной проекции 1""5"" отрезка на грани А --1--2 пирамиды (рис.2, г) построена профильная проекция F "".

Горизонтальная проекция F " построена с помощью горизонтали той же грани, проходящей через проекцию 6" на проекции ребра А"1". Горизонтальная проекция Е" построена с помощью координаты Y Е определенной по профильной проекции Е"". В рассмотренных примерах координаты у А , у Е заданы относительно плоскостей д(д", д""), у С - относительно плоскости г (г", г""").

3. Сечение прямоугольной трубы

При пересечении призмы или пирамиды плоскостью в сечении получается плоская фигура, ограниченная линиями пересечения секущей плоскости с гранями призмы или пирамиды.

Простейший пример конструирования детали пересечением исходной заготовки в виде прямоугольной трубы плоскостью приведен на рис. 3. В этом случае деталь - волновод изготавливают, отрезая часть заготовки по плоскости д(д").

4. Построение сечения пирамиды

Наклонная площадка ABCD образована срезом верхней части пирамиды фронтально проецирующей плоскостью з (з"). Фронтальные проекции А ", В", С", D" точек находятся на фронтальном следе з" плоскости, а фронтальная проекция площадки ABCD совпадает со следом з".Профильная А ""В"" С ""D"" и горизонтальная А "В" С "D" проекции площадки построены по проекциям указанных точек на проекциях соответствующих ребер.

Часто требуется построить натуральный или истинный вид фигуры сечения тела плоскостью. На рис.4 для этой цели вверху слева применен способ перемены плоскостей проекций. В качестве дополнительной плоскости принята плоскость р 4 , параллельная плоскости з и перпендикулярная плоскости р 2 . Натуральный вид площадки - фигура сечения A IV B IV C IV D IV . Другой вариант построения натурального вида наклонной площадки ABCD показан на рис.4 справа внизу - A 0 B 0 C 0 D 0 . Для построения использованы новые координатные оси х 1 и у 1 лежащие в плоскости з. Ось х 1 параллельна плоскости р 2 , ось у 1 - перпендикулярна плоскости р 2 .

Координаты по оси х 1 точек A 0 , B 0 , С 0 , D 0 равны координатам по оси х 1 фронтальных проекций А"", В", С", D" этих точек. Координаты х 1 точек С 0 , С" по оси х 1 равны нулю. Координаты у В, y D по оси у 1 точек В 0 , D 0 равны координатам по этой оси (параллельной оси у) горизонтальных проекций В", D". Координаты по оси у 1 точек А, С равны нулю. По указанным координатам на осях х 1 , у 1 строят натуральную величину А 0 В 0 C 0 D 0 наклонной площадки ABCD.

5. Пересечение пирамиды линией и призмой

Построение точек пересечения прямой с поверхностью многогранника сводится к построению линии пересечения многогранника проецирующей плоскостью, в которую заключают данную прямую. На рис. 5(слева) приведено построение проекций Е", Е" и F", F" точек пересечения прямой с проекциями M"N", M"N" с боковыми гранями пирамиды. Пирамида задана проекциями G", G" вершины и А"В"С",А"В"С основания. Прямая MN заключена во вспомогательную фронтальную проецирующую плоскость г(г"). Горизонтальные проекции Е" и F" искомых точек построены в пересечении проекции M"N" с горизонтальными проекциями 1", 3" и 2", 3" отрезков, по которым плоскость г пересекает боковые грани пирамиды. Фронтальные проекции Е" и F" определены по линиям связи.

Изображение пересекающихся между собой в пространстве призмы А и пирамиды Б представлено на рис. 5(справа). Линия их пересечения проходит через точки 1, 3, 4, 6 пересечения ребер пирамиды с гранями призмы и точки 2, 5 пересечения ребра призмы

с гранями пирамиды. В общем случае в пересечении многогранников получается пространственная замкнутая ломаная линия, которая в некоторых частных случаях может оказаться плоской. При построении линии пересечения многогранников применяют два способа и их комбинации.

1. Строят точки пересечения ребер одного многогранника с гранями другого и Ребер второго с гранями первого. Через построенные точки в определенной последовательности проводят ломаную линию пересечения данных многогранников. При этом отрезки прямых проводят лишь через те построенные точки, которые лежат в одной и той же грани.

2. Строят отрезки прямых, по которым грани одной поверхности пересекают грани другой. Эти отрезки являются звеньями ломаной линии пересечения многогранных поверхностей между собой.

Таким образом, построение линии пересечения двух многогранников сводится или к построению линии пересечения двух плоскостей между собой, или к построению точки пересечения прямой с плоскостью

6. Последовательность построения 2-х многогранников

Рис. 6, а. Прежде чем приступить к построениям, анализируют взаимное положение многогранников и их расположение относительно плоскостей проекций. В данном случае очевидно, что многогранники могут пересекаться только по боковым граням. Ребра призмы и боковые ребра пирамиды параллельны плоскости р 2 , основания пирамиды параллельны плоскости р 1 . Нижняя грань призмы и ее основания перпендикулярны плоскости р 1 .

Указанные особенности расположения призмы и пирамиды определяют и наиболее рациональный способ построения линии пересечения их поверхностей по точкам пересечения ребер призмы с гранями пирамиды и боковых ребер пирамиды с гранями призмы.

Построения показаны на рис. 6, б. Рассмотрим их для левой части чертежа (от оси пирамиды). Проекции 1", 1", 2", 2", 3", 3" ,4", 4" точек пересечения ребер призмы с гранями пирамиды найдены путем проведения через них фронтальных плоскостей в (в"), б (б"), г (г"). Они пересекают левые боковые грани пирамиды по фронталям - прямым линиям, параллельным левому ребру пирамиды. Положение их фронтальных проекций определено по горизонтальным проекциям 21", 22", и 24" точек пересечения горизонтальных проекций в", б" и г" плоскостей в, б, г с горизонтальной проекцией основания пирамиды. В пересечении фронтальных проекций этих линий с фронтальными проекциями ребер призмы найдены фронтальные проекции 1", 2" и 4" точек пересечения ребер призмы с левыми гранями пирамиды. По ним построены горизонтальные проекции 1", 2", 4".

Проекции 3", 3" точки пересечения ребер AD пирамиды с верхней задней гранью призмы найдены с помощью вспомогательной фронтальной плоскости з(з"), которая проведена через это ребро. Плоскость з пересекает грань призмы по прямой, параллельной ребрам призмы и проходящей через точку 23 на основании призмы. В пересечении фронтальных проекций этой прямой и ребра А" D" найдена фронтальная проекция 3" точки пересечения указанного ребра с задней верхней гранью призмы и на линии связи - горизонтальная проекция 3". С нижней гранью призмы, перпендикулярной плоскости р 2 , ребро AD пересекается в точке с фронтальной проекцией 5 ". В проекционной связи на проекции А" D" построена ее горизонтальная проекция 5".

Таким образом, проекции точек пересечения всех ребер призмы с левыми гранями пирамиды - 1", 1", 2", 2", 4", 4" и ребра AD пирамиды с двумя гранями призмы - 3", 3" и 5", 5" построены. Соединяем проекции точек, принадлежащих одной грани, и получаем проекции 1" 2" 3" 4" 5" 1" , 1" 2" 3" 4" 5" 1" ломаной линии пересечения.

Построение в правой части чертежа проекции 6" 7" 8" 9" 10" 6", 6" 7" 8" 9" 10" 6" линии пересечения аналогично. Порядок построения иллюстрируется стрелками.

После построения проекций линий пересечения многогранников обводят проекции оставшихся частей ребер многогранников.

Заметим, что переднее и заднее ребра пирамиды не пересекают поверхность призмы.

7. Построение сечения циліндра

Ось цилиндра и вся цилиндрическая поверхность перпендикулярны плоскости р 1 . Следовательно, все точки цилиндрической поверхности, в том числе и линия пересечения ее с плоскостью б(б"), проецируются на плоскость р 1 в окружность. На ней отмечают горизонтальные проекции точек 1", 2", 3", 4", 5", 6", 7", 8", 9" , 10", 11" и 12" эллипса, расположив их равномерно по окружности. В проекционной связи строят фронтальные проекции 1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12" отмеченных точек на фронтальном следе б" секущей плоскости. Профильные проекции тех же точек строят по их горизонтальной и фронтальной проекциям на линиях связи.

Профильная проекция линии пересечения цилиндра с секущей плоскостью - эллипс, большая ось 10""4"" которого в данном случае равна диаметру цилиндра, а малая 1"" 7"" -профильная проекция отрезка -- 1-- 7.

Если расположить на рис.7 плоскость б под углом 45° к оси, то профильная проекция эллипса фигуры сечения будет окружность.

Если острый угол между осью цилиндра и секущей плоскостью будет меньше 45°, то малая ось эллипса на профильной проекции станет равной диаметру цилиндра.

Натуральный вид фигуры сечения цилиндра плоскостью б построен способом перемены плоскостей проекций на плоскости р 4, перпендикулярной плоскости р 2. Большая ось эллипса - отрезок 1 IV 7 IV = 1" 7", малая- отрезок 4 IV 10 IV =d

8. Построение развертки цилиндра

Построение развертки (рис.8). Полная развертка состоит из четырех частей: развертки боковой поверхности, ограниченной пятью отрезками прямой линии и кривой A 0 l 0 B 0 - синусоидой; натурального вида фигуры сечения; круга основания цилиндра; сегмента, полученного на верхнем основании.

Полная развертка боковой поверхности цилиндра - прямоугольник с высотой, равной цилиндру, и длиной L = рd, где d - диаметр цилиндра. Для построения на развертке точек линии среза развертку основания цилиндра делят на такое же число частей, как и при построении проекций линии среза. Проводят через точки деления образующие и отмечают на них высоту до точек эллипса среза - точки 1 0 2 0 и 12 0 , 3 0 и 11 0 , 4 0 и 10 0 , 5 0 и 9 0 , 6 0 и 8 0 , 7 . Соединяют построенные точки плавной кривой - синусоидой. Натуральный вид фигуры среза цилиндра плоскостью выполнен ранее(1 IV 2 IV 3 IV …12 IV) и его по координатам строят на развертке.

Построим на чертеже цилиндра проекции точки, указанной на разверстке точкой М 0 . Для этого отметим хорду l 2 между образующей, на которой расположена точка М 0 , и образующей точки 4. По хорде l 2 строим горизонтальную проекцию М" и по известной высоте ее расположения найдем ее фронтальную проекцию М".

9. Возможные сечения конуса

10. Построение сечения конуса и его развертки

Развертка боковой поверхности прямого кругового конусапредставляет собой круговой сектор с углом ц = d/l Ч 180 ° при вершине, где d - диаметр основания, l - длина образующей конуса. Построение сектора (рис. 10 внизу) выполняют с разбивкой его на равные части соответственно разметке образующих на чертеже (см. рис. 10 конуса).

Используя положение образующих на чертеже и на развертке находят положение точек на развертке при помощи натуральных величин отрезков от вершины до соответствующих точек линии пересечения на чертеже. При этом расстояния G 0 A 0 и G 0 B 0 соответствуют фронтальным проекциям G"А " С"В". Отрезки образующих от вершины до других точек проецируются на фронтальную плоскость проекций с искажениями. Поэтому их натуральную величину находят вращением вокруг оси конуса до положения, параллельного фронтальной плоскости проекций. Например, положение точки D 0 на развертке найдено при помощи отрезка G "D 1 " - натуральной величины образующей от вершины G до точки D точки E 0 , - при помощи отрезка G"Е 1 " (или G""E"").

Полная развертка поверхности усеченного конуса состоит из трех частей: 1) развертки боковой поверхности, ограниченной дугой окружности радиуса l, кривой B 0 I 0 F 0 E 0 D 0 C 0 A 0 и симметричной ей; круга основания; 3) натурального вида фигуры сечения.

На рис. 10 (вверху) показано построение фронтальной и горизонтальной проекций точки К по изображению К 0 этой точки на развертке (рис.10). Для построения проведена образующая G 0 13 0 через точку К 0 на развертке. С помощью отрезка l 1 построена горизонтальная проекция 13". Через нее проведены горизонтальная G" 13" и фронтальная G"13 " проекции образующей G - 13. Отрезок G 0 K 0 = G"K 1 " на проекции образующей G "7 ". Обратным вращением построена фронтальная проекция К" точки К на фронтальной проекции образующей G"13".Горизонтальная проекция К" построена с помощью линии связи.

11. Построение сечения шара

На рис. 11 показано построение проекций некоторых точек.

Проекции С" и D " построены на горизонтальной проекции параллели радиуса 0"1", построенной с

помощью проекции 1 ". Проекция С"" и D "" построены на профильной проекции окружности, проведенной на сфере через проекции C "(D ") так, что плоскость окружности параллельна плоскости проекций.

Проекция Е" является точкой касания эллипса (горизонтальной проекции окружности среза) и экватора сферы. Она построена в проекционной связи на горизонтальной проекции экватора по фронтальной проекции Е".

Горизонтальная проекция М" произвольной точки на линии среза построена с помощью параллели радиуса О"2" , фронтальная проекция которой проходит через проекции М 2 " . Проекция F "является точкой касания эллипса (профильной проекции окружности среза) и профильной проекции очерка сферы.

Если плоскость, пересекающая сферу, является плоскостью общего положения, то задачу решают способом перемены плоскостей проекций. Дополнительную плоскость проекций выбирают так, чтобы обеспечить перпендикулярность ее и секущей плоскости. Это позволяет упростить построение линии пересечения.

12. Построение сечений тора

В примере на рис. 12 показано применение вспомогательных плоскостей г 1 (г 1 ") и г 2 (г 2 ") , перпендикулярных оси тора, для построения линии пересечения и натурального вида фигуры сечения поверхности тора плоскостью б (б""). Тор на рис.12 имеет два изображения - фронтальную проекцию и половину профильной проекции.

Полуокружность радиуса R 2 (профильная проекция линии пересечения тора вспомогательной плоскостью г 2 ) касается проекции плоскости б(следа б""). Тем самым определяются профильная проекция 3"" и по ней фронтальная проекция 3"" одной из точек проекции искомой линии пересечения. Полуокружность радиуса R 1 - профильная проекция линии пересечения тора вспомогательной плоскостью г 1 . Она пересекает профильную проекцию плоскости б (след б"") в двух точках 5"" и 7"" - профильных проекциях точек линии пересечения. Проводя аналогичные построения, можно получить необходимое количество проекций точек для искомой линии пересечения. Используем найденные точки для построения натурального вида фигуры сечения. Фигура сечения тора плоскостью, параллельной его оси, имеет оси и центр симметрии. При ее построении использованы расстояния l 1 и l 2 на фронтальной проекции для нанесения точек 5 0 , 7 0 и 3 0 .

Точки 6 0 , 8 0 и 4 0 построены как симметричные. Построенная кривая пересечения поверхности тора плоскостью выражается алгебраическим уравнением 4-го порядка.

Кривые пересечения тора с плоскостью, параллельной оси, приведены на рис.12 внизу. Они имеют общее название - кривые Персея (Персей -- геометр Древней Греции). Это кривые четвертого порядка. Вид кривых зависит от величины расстояния от секущей плоскости до оси тора.

Размещено на Allbest.ru

Подобные документы

    Построение разверток поверхностей. Параллелепипед и его развертка. Чертеж развертки поверхности правильной пирамиды, прямого кругового конуса, прямого кругового цилиндра, правильной призмы, прямого эллиптического цилиндра. Способ нормального сечения.

    контрольная работа , добавлен 11.11.2014

    Пространственные тела и их сечения; точка, прямая, плоскость и векторы. Методы построения, задание и построение сечений пространственных тел, исследование свойств сечения. Способы визуализации трехмерного пространства. Создание компьютерного приложения.

    курсовая работа , добавлен 15.07.2010

    Изучение однородных выпуклых и однородных невыпуклых многогранников. Определение правильных многогранников. Двойственность куба и октаэдра. Теорема Эйлера. Тела Архимеда. Получение тел Кеплера-Пуансо. Многогранники в геологии, ювелирном деле, архитектуре.

    презентация , добавлен 27.10.2013

    Различные виды правильных и полуправильных многогранников, их основные свойства. Многогранные поверхности, многогранники, топологические, простейшие и правильные многогранники. Грани, ребра и вершины поверхности многогранника. Пирамиды и призмы.

    курсовая работа , добавлен 21.08.2013

    Фигуры вращения правильных многогранников, использование их теории. Виды поверхностей в фигурах вращения. Теорема о пересечении гиперболической и цилиндрической поверхностей вращения. Классификация задач на вращение многогранников и вычисление объемов.

    реферат , добавлен 25.09.2009

    Понятие многогранника и его элементы с точки зрения топологии. Определение площади и боковой поверхности призмы, параллелепипеда, пирамиды. Понятие правильных, полуправильных, звездчатых многогранников. Многогранники в разных областях культуры и науки.

    курсовая работа , добавлен 02.04.2012

    Куб (гексаэдр) – представитель правильных выпуклых многогранников, его объем, сечения, площадь и свойства. Характеристика типов правильных многогранников в XIII книге "Начал" Евклида и идеалистической картине мира Платона. Отношение к кубу в философии.

    презентация , добавлен 03.11.2011

    Определение пирамиды как геометрической фигуры, ее виды. Проекция треугольной пирамиды. Основные свойства полной и усеченной пирамиды, нахождение площади и объема, плоские сечения. Пример построения сечения пирамиды с плоскостью по заданным параметрам.

    практическая работа , добавлен 16.06.2009

    Определение цилиндра (кругового прямого и наклонного), прямого и усечённого конуса, шара и сферы. Основные формулы по расчету геометрических размеров фигур вращения: радиуса, площади боковой и полной поверхности. Объем шара по Архимеду. Уравнение сферы.

    презентация , добавлен 18.04.2013

    Понятие и историческая справка о конусе, характеристика его элементов. Особенности образования конуса и виды конических сечений. Построение сферы Данделена и ее параметры. Применение свойств конических сечений. Расчеты площадей поверхностей конуса.

Многогранники не только занимают видное место в геометрии, но и встречаются в повседневной жизни каждого человека. Не говоря уже об искусственно созданных предметах обихода в виде различных многоугольников, начиная со спичечного коробка и заканчивая архитектурными элементами, в природе также встречаются кристаллы в форме куба (соль), призмы (хрусталь), пирамиды (шеелит), октаэдра (алмаз) и т. д.

Понятие многогранника, виды многогранников в геометрии

Геометрия как наука содержит раздел стереометрию, изучающую характеристики и свойства объёмных тела, стороны которых в трёхмерном пространстве образованы ограниченными плоскостями (гранями), носят название "многогранники". Виды многогранников насчитывают не один десяток представителей, отличающихся количеством и формой граней.

Тем не менее у всех многогранников есть общие свойства:

  1. Все они имеют 3 неотъемлемых компонента: грань (поверхность многоугольника), вершина (углы, образовавшиеся в местах соединения граней), ребро (сторона фигуры или отрезок, образованный в месте стыка двух граней).
  2. Каждое ребро многоугольника соединяет две, и только две грани, которые по отношению друг к другу являются смежными.
  3. Выпуклость означает, что тело полностью расположено только по одну сторону плоскости, на которой лежит одна из граней. Правило применимо ко всем граням многогранника. Такие геометрические фигуры в стереометрии называют термином выпуклые многогранники. Исключение составляют звёздчатые многогранники, которые являются производными правильных многогранных геометрических тел.

Многогранники можно условно разделить на:

  1. Виды выпуклых многогранников, состоящих из следующих классов: обычные или классические (призма, пирамида, параллелепипед), правильные (также называемые Платоновыми телами), полуправильные (второе название - Архимедовы тела).
  2. Невыпуклые многогранники (звёздчатые).

Призма и её свойства

Стереометрия как раздел геометрии изучает свойства трёхмерных фигур, виды многогранников (призма в их числе). Призмой называют геометрическое тело, которое имеет обязательно две совершенно одинаковые грани (их также называют основаниями), лежащие в параллельных плоскостях, и n-ое число боковых граней в виде параллелограммов. В свою очередь, призма имеет также несколько разновидностей, в числе которых такие виды многогранников, как:

  1. Параллелепипед - образуется, если в основании лежит параллелограмм - многоугольник с 2 парами равных противоположных углов и двумя парами конгруэнтных противоположных сторон.
  2. имеет перпендикулярные к основанию рёбра.
  3. характеризуется наличием непрямых углов (отличных от 90) между гранями и основанием.
  4. Правильная призма характеризуется основаниями в виде с равными боковыми гранями.

Основные свойства призмы:

  • Конгруэнтные основания.
  • Все рёбра призмы равны и параллельны по отношению друг к другу.
  • Все боковые грани имеют форму параллелограмма.

Пирамида

Пирамидой называют геометрическое тело, которое состоит из одного основания и из n-го числа треугольных граней, соединяющихся в одной точке - вершине. Следует отметить, что если боковые грани пирамиды представлены обязательно треугольниками, то в основании может быть как треугольный многоугольник, так и четырёхугольник, и пятиугольник, и так до бесконечности. При этом название пирамиды будет соответствовать многоугольнику в основании. Например, если в основании пирамиды лежит треугольник - это , четырёхугольник - четырёхугольная, и т. д.

Пирамиды - это конусоподобные многогранники. Виды многогранников этой группы, кроме вышеперечисленных, включают также следующих представителей:

  1. имеет в основании правильный многоугольник, и высота ее проектируется в центр окружности, вписанной в основание или описанной вокруг него.
  2. Прямоугольная пирамида образуется тогда, когда одно из боковых рёбер пересекается с основанием под прямым углом. В таком случае это ребро справедливо также назвать высотой пирамиды.

Свойства пирамиды:

  • В случае если все боковые рёбра пирамиды конгруэнтны (одинаковой высоты), то все они пересекаются с основанием под одним углом, а вокруг основания можно прочертить окружность с центром, совпадающим с проекцией вершины пирамиды.
  • Если в основании пирамиды лежит правильный многоугольник, то все боковые рёбра конгруэнтны, а грани являются равнобедренными треугольниками.

Правильный многогранник: виды и свойства многогранников

В стереометрии особое место занимают геометрические тела с абсолютно равными между собой гранями, в вершинах которых соединяется одинаковое количество рёбер. Эти тела получили название Платоновы тела, или правильные многогранники. Виды многогранников с такими свойствами насчитывают всего пять фигур:

  1. Тетраэдр.
  2. Гексаэдр.
  3. Октаэдр.
  4. Додекаэдр.
  5. Икосаэдр.

Своим названием правильные многогранники обязаны древнегреческому философу Платону, описавшему эти геометрические тела в своих трудах и связавшему их с природными стихиями: земли, воды, огня, воздуха. Пятой фигуре присуждали сходство со строением Вселенной. По его мнению, атомы природных стихий по форме напоминают виды правильных многогранников. Благодаря своему самому захватывающему свойству - симметричности, эти геометрические тела представляли большой интерес не только для древних математиков и философов, но и для архитекторов, художников и скульпторов всех времён. Наличие всего лишь 5 видов многогранников с абсолютной симметрией считалось фундаментальной находкой, им даже присуждали связь с божественным началом.

Гексаэдр и его свойства

В форме шестигранника преемники Платона предполагали сходство со строением атомов земли. Конечно же, в настоящее время эта гипотеза полностью опровергнута, что, однако, не мешает фигурам и в современности привлекать умы известных деятелей своей эстетичностью.

В геометрии гексаэдр, он же куб, считается частным случаем параллелепипеда, который, в свою очередь, является разновидностью призмы. Соответственно и свойства куба связаны со с той лишь разницей, что все грани и углы куба равны между собой. Из этого вытекают следующие свойства:

  1. Все рёбра куба конгруэнтны и лежат в параллельных плоскостях по отношению друг к другу.
  2. Все грани - конгруэнтные квадраты (всего в кубе их 6), любой из которых может быть принят за основание.
  3. Все межгранные углы равны 90.
  4. Из каждой вершины исходит равное количество рёбер, а именно 3.
  5. Куб имеет 9 которые все пересекаются в точке пересечения диагоналей гексаэдра, именуемой центром симметрии.

Тетраэдр

Тетраэдр - это четырёхгранник с равными гранями в форме треугольников, каждая из вершин которых является точкой соединения трёх граней.

Свойства правильного тетраэдра:

  1. Все грани тетраэда - это из чего следует, что все грани четырёхгранника конгруэнтны.
  2. Так как основание представлено правильной геометрической фигурой, то есть имеет равные стороны, то и грани тетраэдра сходятся под одинаковым углом, то есть все углы равны.
  3. Сумма плоских углов при каждой из вершин равняется 180, так как все углы равны, то любой угол правильного четырёхгранника составляет 60.
  4. Каждая из вершин проецируется в точку пересечения высот противоположной (ортоцентр) грани.

Октаэдр и его свойства

Описывая виды правильных многогранников, нельзя не отметить такой объект, как октаэдр, который визуально можно представить в виде двух склеенных основаниями четырёхугольных правильных пирамид.

Свойства октаэдра:

  1. Само название геометрического тела подсказывает количество его граней. Восьмигранник состоит из 8 конгруэнтных равносторонних треугольников, в каждой из вершин которого сходится равное количество граней, а именно 4.
  2. Так как все грани октаэдра равны, равны и его межгранные углы, каждый из которых равняется 60, а сумма плоских углов любой из вершин составляет, таким образом, 240.

Додекаэдр

Если представить, что все грани геометрического тела представляют собой правильный пятиугольник, то получится додекаэдр - фигура из 12 многоугольников.

Свойства додекаэдра:

  1. В каждой вершине пересекаются по три грани.
  2. Все грани равны и имеют одинаковую длину рёбер, а также равную площадь.
  3. У додекаэдра 15 осей и плоскостей симметрии, причём любая из них проходит через вершину грани и середину противоположного ей ребра.

Икосаэдр

Не менее интересная, чем додекаэдр, фигура икосаэдр представляет собой объёмное геометрическое тело с 20 равными гранями. Среди свойств правильного двадцатигранника можно отметить следующие:

  1. Все грани икосаэдра - равнобедренные треугольники.
  2. В каждой вершине многогранника сходится пять граней, и сумма смежных углов вершины составляет 300.
  3. Икосаэдр имеет так же, как и додекаэдр, 15 осей и плоскостей симметрии, проходящих через середины противоположных граней.

Полуправильные многоугольники

Кроме Платоновых тел, в группу выпуклых многогранников входят также Архимедовы тела, которые представляют собой усечённые правильные многогранники. Виды многогранников данной группы обладают следующими свойствами:

  1. Геометрические тела имеют попарно равные грани нескольких типов, например, усечённый тетраэдр имеет так же, как и правильный тетраэдр, 8 граней, но в случае Архимедова тела 4 грани будут треугольной формы и 4 - шестиугольной.
  2. Все углы одной вершины конгруэнтны.

Звёздчатые многогранники

Представители необъёмных видов геометрических тел - звёздчатые многогранники, грани которых пересекаются друг с другом. Они могут быть образованы путём слияния двух правильных трёхмерных тел либо в результате продолжения их граней.

Таким образом, известны такие звёздчатые многогранники, как: звёздчатые формы октаэдра, додекаэдра, икосаэдра, кубооктаэдра, икосододекаэдра.

Студент должен:

знать:

    понятие многогранника, его поверхности, понятие правильного многогранника;

    определение призмы, параллелепипеда; виды призм; определение пирамиды, правильной пирамиды;

    понятие тела вращения и поверхности вращения;

    определение цилиндра, конуса, шара, сферы;

уметь:

    изображать и вычислять основные элементы прямых призм, параллелепипедов и пирамид;

    строить простейшие сечения многогранников, указанных выше.

Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера.

Призма. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.

Пирамида. Правильная пирамида. Усеченная пирамида . Тетраэдр.

Симметрии в кубе, в параллелепипеде, в призме и пирамиде.

Сечения куба, призмы и пирамиды.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

Цилиндр и конус. Усеченный конус . Основание, высота, боковая поверхность, образующая, развертка.Осевые сечения и сечения, параллельные основанию.

Шар и сфера, их сечения. Касательная плоскость к сфере.

Тема 9. «Начала математического анализа»

Студент должен:

знать:

    определение числовой последовательности;

    понятие производной, ее геометрический и физический смысл;

    правила и формулы дифференцирования функций, перечисленных в программе дисциплины;

    уравнение касательной к графику функции в указанной точке, понятие углового коэффициента прямой;

    достаточные признаки возрастания и убывания функции, существования экстремумов;

    определение второй производной, ее физический смысл;

    общую схему исследования функций и построения графиков с помощью производной;

    правило нахождения наибольшего и наименьшего значения функции на промежутке;

    определение первообразной;

    таблицу и правила вычисления первообразных;

    понятие определенного интеграла, его геометрический смысл;

    понятие криволинейной трапеции, способ вычисления площади криволинейной трапеции с помощью первообразной и определенного интеграла;

уметь:

    дифференцировать функции, используя таблицу и правила вычисления производных;

    вычислять значение производной функции в указанной точке;

    находить угловой коэффициент касательной, составлять уравнение касательной к графику функции в указанной точке;

    применять производную для нахождения промежутков монотонности и экстремумов функции;

    находить производную второго порядка, применять вторую производную для исследования функции;

    находить наибольшее и наименьшее значение функции на промежутке;

    решать несложные прикладные задачи на нахождение наибольших и наименьших значений реальных величин;

    вычислять первообразные элементарных функций с помощью таблиц и правил;

    вычислять первообразную, удовлетворяющую заданным начальным условиям;

    вычислять определенный интеграл с помощью формулы Ньютона-Лейбница;

    находить площади криволинейных трапеций.

Последовательности. Способы задания и свойства числовых последовательностей. Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Суммирование последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма.

Понятие о непрерывности функции.

Производная. Понятие о производной функции, её геометрический и физический смысл. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Применение производной к исследованию функций и построению графиков. Производные обратной функции и композиции функции .

Примеры использования производной для нахождения наилучшего решения в прикладных задачах. Вторая производная, ее геометрический и физический смысл. Применение производной к исследованию функций и построению графиков. Нахождение скорости для процесса, заданного формулой и графиком.

Первообразная и интеграл. Применение определенного интеграла для нахождения площади криволинейной трапеции. Формула Ньютона-Лейбница. Примеры применения интеграла в физике и геометрии.

Многогранники и тела вращения

В рамках УСП «Первые шаги в пространство»

Команда «Морские котики», г.Новокузнецк


"Морские котики"?

Морские котики не только милые, но ещё и очень умные. Они легко обучаемы. У котиков великолепная встроенная навигационная система. Несмотря на то, что это стайные животные, морские котики уходят на охоту в одиночку и вообще проявляют индивидуализм. Мы назвали себя этими животными, потому что мы хотим во многом быть похожими на них, быть смелыми и умными, ведь часто этих животных недооценивают.


Девиз команды:

Мы-морские котики, Активны и умны, Наш девиз всего три слова, Улыбаться это клево!


Стихи о геометрических фигурах

Есть на свете пирамида –

Удивительный объект,

Ее строили в Египте,

А вот как для всех секрет.

Вот хожу я по квартире и смотрю вокруг себя, И по всюду окружают тела вращения меня. На окне стоит игрушка в виде конуса она. А вот банка из-под чая форму цилиндра приняла.


Стоит на кухне холодильник По форме он параллелепипед. Как у квадрата у него Шесть граней на лицо, Однако есть отличия

У куба грани равные,

А у него противоположные.

Признаюсь вам призма, Ну очень капризна. Скажу без обмана Но так многогранна (автор Наталья У.)

А лучшая фигура-куб!

Поставлю я на кон свой зуб

И грани все и ребра в нем,

Прямо под прямым углом


Многогранники и тела вращения в объектах окружающего мира

Гипотеза: Во многих предметах окружающего мира, можно увидеть многогранники и тела вращения


Многогранник -

Геометрическое тело, поверхность которого состоит из конечного числа плоских многоугольников.


Призма -

Многогранник, две грани которого n-угольники, а остальные грани - параллелограммы.


Параллелепипед -

Призма основаниями которой служат параллелограммы.


Куб -

Прямоугольный параллелепипед с равными измерениями. Все грани куба – равные квадраты.


Пирамида -

Многогранник, основание которого многоугольник, а остальные грани – треугольники, имеющие общую вершину.


Усеченная пирамида -

Многогранник, у которого вершинами служат вершины основания и вершины ее сечения плоскостью, параллельной основанию.


Тела вращения -

Объемные тела, возникающие при вращении плоской геометрической фигуры, ограниченной кривой, вокруг оси, лежащей в той же плоскости.


Цилиндр -

Фигура, полученная при вращении прямоугольника вокруг оси, содержащей его сторону.


Конус -

Фигура, полученная при вращении прямоугольного треугольника вокруг оси.






Вывод

В ходе исследования мы подтвердили свою гипотезу и убедились, что многие объекты окружающего нас мира имеют форму тел вращения и многогранников.



Гипотеза:

НЕ СУЩЕСТВУЕТ ГРАНИ МЕЖДУ МИРОМ ИСКУССТВА

И МИРОМ ГЕОМЕТРИИ.


Знаменитый художник, увлекавшийся геометрией, Альбрехт Дюрер (1471- 1528), в известной гравюре «Меланхолия»

на переднем плане

изобразил каменный многогранник .


Голландский художник Мориц Корнилис Эшер (1898-1972) создал уникальные и очаровательные работы, в которых использованы или показаны широкий круг математических идей.

Правильные геометрические тела - многогранники - имели особое очарование для Эшера. В его многих работах многогранники являются главной фигурой и в еще большем количестве работ они встречаются в качестве вспомогательных элементов.


"Четыре тела" Эшер изобразил пересечение основных правильных многогранников, расположенных на одной оси симметрии, кроме этого многогранники выглядят полупрозрачными, и сквозь любой из них можно увидеть остальные.


Изящный пример звездчатого додекаэдра можно найти в его работе "Порядок и хаос". В данном случае звездчатый многогранник помещен внутрь стеклянной сферы. Аскетичная красота этой конструкции контрастирует с беспорядочно разбросанным по столу мусором.

Наиболее интересная работа Эшера - гравюра "Звезды", на которой можно увидеть тела, полученные объединением тетраэдров, кубов и октаэдров.

Если бы Эшер изобразил в данной работе лишь различные варианты многогранников, мы никогда бы не узнали о ней. Но он по какой-то причине поместил внутрь центральной фигуры хамелеонов, чтобы затруднить нам восприятие всей фигуры.


На картине «Гравитация» изображён додекаэдр , образованный двенадцатью плоскими пятиконечными звёздами. На каждой из площадок живёт длинношеее четырёхногое бесхвостое фантастическое животное; его туловище находится в пирамиде, в отверстия которой оно высовывает конечности, верхушка пирамиды является одной из стен жилища соседнего чудовища .


На картине художника Сальвадора Дали «Тайная Вечеря» Христос со своими учениками изображён на фоне огромного прозрачного додекаэдра.

Форму додекаэдра, по мнению древних, имела ВСЕЛЕННАЯ, т.е. они считали, что мы живём внутри свода, имеющего форму поверхности правильного додекаэдра.



Вывод:

ГИПОТЕЗА ДОКАЗАНА, ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ, МНОГОГРАННИКИ ЯВЛЯЮТСЯ НЕОТЪЕМЛЕМОЙ ЧАСТЬЮ ГЕОМЕТРИИ. НА ПРИМЕРЕ РАБОТ ВЕЛИКИХ ХУДОЖНИКОВ МЫ ДОКАЗАЛИ, ЧТО НЕ СУЩЕСТВУЕТ ГРАНИ МЕЖДУ ИСКУССТВОМ И ГЕОМЕТРИЕЙ.


Какой вклад вносит геометрия в развитие культуры человека?

Искусство - это особый способ познания и отражения действительности. Искусство развивает духовную культуру человека. Проанализировав работы великих художников мы без сомнений можем сказать, что не существует границы между миром искусства и миром геометрии. А значит геометрия так же развивает интеллектуальные, творческие способности человека, образное и пространственное мышление, поэтому данная наука является неотъемлемой частью культуры человека.


Ментальная карта «Многогранники и тела вращения в продукции предприятий моего города»


Где живет геометрия в Вашем городе?

Геометрия в Нашем городе живет по всюду!!! На какое архитектурное сооружение не посмотри, в нем обязательно присутствуют многогранники и тела вращения. Собранные вместе в одном сооружении они создают уникальные, неповторимые, гениальные здания!!!



Используемая литература:

  • http://www.uzluga.ru/potrb/Многогранник+–+это+такое+тело,поверхность+которого+состоит+из+конечного+числа+плоских+многоугольниковb/part-5.html
  • http://kamensky.perm.ru/proj/mng/01.htm
  • http://www.liveinternet.ru/tags/%FD%F8%E5%F0/page3.html
  • http://www.distedu.ru/mirror/_math/www.tmn.fio.ru/works/26x/304/d9_3.htm
  • https://ru.wikipedia.org/wiki/Эшер,_Мауриц_Корнелис
  • http://www.propro.ru/graphbook/graphbook/book/001/027.htm
  • http://math4school.ru/mnogogranniki.html

1 вариант

1. Тело, поверхность которого состоит из конечного числа плоских многоугольников, называется:

1. Четырехугольник 2. Многоугольник 3. Многогранник 4. Шестиугольник

2. К многогранникам относятся:

1. Параллелепипед 2. Призма 3. Пирамида 4. Все ответы верны

3. Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани называется:

1. Диагональю 2. Ребром 3. Гранью 4. Осью

4. У призмы боковые ребра:

1. Равны 2. Симметричны 3. Параллельны и равны 4. Параллельны

5. Грани параллелепипеда не имеющие общих вершин, называются:

1. Противолежащими 2. Противоположными 3. Симметричными 4. Равными

6. Перпендикуляр, опущенный из вершины пирамиды на плоскость основания, называется:

1. Медианой 2. Осью 3. Диагональю 4. Высотой

7. Точки, не лежащие в плоскости основания пирамиды, называются:

1. Вершинами пирамиды 2. Боковыми ребрами 3. Линейным размером

4. Вершинами грани

8. Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется:

1. Медианой 2. Апофемой 3. Перпендикуляром 4. Биссектрисой

9. У куба все грани:

1. Прямоугольники 2. Квадраты 3. Трапеции 4. Ромбы

10. Тело, состоящее из двух кругов и всех отрезков, соединяющих точки кругов называется:

1. Конусом 2. Шаром 3. Цилиндром 4. Сферой

11. У цилиндра образующие:

1. Равны 2. Параллельны 3. Симметричны 4. Параллельны и равны

12. Основания цилиндра лежат в:

1. Одной плоскости 2. Равных плоскостях 3. Параллельных плоскостях 4. Разных плоскостях

13. Поверхность конуса состоит из:

1. Образующих 2. Граней и ребер 3. Основания и ребра 4. Основания и боковой поверхности

14. Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется:

1. Радиусом 2. Центром 3. Осью 4. Диаметром

15. Всякое сечение шара плоскостью есть:

1. Окружность 2. Круг 3. Сфера 4. Полукруг

16. Сечение шара диаметральной плоскостью называется:

1. Большим кругом 2. Большой окружностью 3. Малым кругом 4. Окружностью

17. Круг конуса называется:

1. Вершиной 2. Плоскостью 3. Гранью 4. Основанием

18. Основания призмы:

1. Параллельны 2. Равны 3. Перпендикулярны 4. Не равны

19. Площадью боковой поверхности призмы называется:

1. Сумма площадей боковых многоугольников

2. Сумма площадей боковых ребер

3. Сумма площадей боковых граней

4. Сумма площадей оснований

20. Пересечения диагоналей параллелепипеда является его:

1. Центром 2. Центром симметрии 3. Линейным размером 4. Точкой сечения

21. Радиус основания цилиндра 1,5 см, высота 4см. Найти диагональ осевого сечения.

1. 4,2 см. 2. 10 см. 3. 5 см.

0 . Чему равен диаметр основания, если образующая равна 7 см?

1. 7 см. 2. 14 см. 3. 3,5 см.

23. Высота цилиндра равна 8 см, радиус 1 см. Найти площадь осевого сечения.

1. 9 см 2 . 2. 8 см 2 3. 16 см 2 .

24. Радиусы оснований усеченного конуса равны 15 см и 12 см, высота 4 см. Чему равна образующая конуса?

1. 5 см 2. 4 см 3. 10 см

МНОГОГРАННИКИ И ТЕЛА ВРАЩЕНИЯ

2 вариант

1. Вершины многогранника обозначаются:

1. а, в, с, d ... 2. А, В, С, D ... 3. ab , cd , ac , ad ... 4. АВ, СВ, А D , СD ...

2. Многогранник, который состоит из двух плоских многоугольников, совмещенных параллельным переносом, называется:

1. Пирамидой 2. Призмой 3. Цилиндром 4. Параллелепипедом

3. Если боковые ребра призмы перпендикулярны основанию, то призма является:

1. Наклонной 2. Правильной 3. Прямой 4. Выпуклой

4. Если в основании призмы лежит параллелограмм, то она является:

1. Правильной призмой 2. Параллелепипедом 3. Правильным многоугольником

4. Пирамидой

5. Многогранник, который состоит из плоского многоугольника, точки и отрезков соединяющих их, называется:

1. Конусом 2. Пирамидой 3. Призмой 4. Шаром

6. Отрезки, соединяющие вершину пирамиды с вершинами основания, называются:

1. Гранями 2. Сторонами 3. Боковыми ребрами 4. Диагоналями

7. Треугольная пирамида называется:

1. Правильной пирамидой 2. Тетраэдром 3. Треугольной пирамидой 4. Наклонной пирамидой

8. К правильным многогранникам не относится:

1. Куб 2. Тетраэдр 3. Икосаэдр 4. Пирамида

9. Высота пирамиды является:

1. Осью 2. Медианой 3. Перпендикуляром 4. Апофемой

10. Отрезки, соединяющие точки окружностей кругов, называются:

1. Гранями цилиндра 2. Образующими цилиндра 3. Высотами цилиндра

4. Перпендикулярами цилиндра

1. Осью цилиндра 2. Высотой цилиндра 3. Радиусом цилиндра

4. Ребром цилиндра

12. Тело, которое состоит из точки, круга и отрезков соединяющих их, называется:

1. Пирамидой 2. Конусом 3. Шаром 4. Цилиндром

13. Тело, которое состоит из всех точек пространства, называется:

1. Сферой 2. Шаром 3. Цилиндром 4. Полусферой

14. Граница шара называется:

1. Сферой 2. Шаром 3. Сечением 4. Окружностью

15. Линия пересечения двух сфер есть:

1. Круг 2. Полукруг 3. Окружность 4. Сечение

16. Сечение сферы называется:

1. Кругом 2. Большой окружностью 3. Малым кругом 4. Малой окружностью

17. Грани выпуклого многогранника являются выпуклыми:

1. Треугольниками 2. Углами 3. Многоугольниками 4. Шестиугольниками

18. Боковая поверхность призмы состоит из…

1. Параллелограммов 2. Квадратов 3. Ромбов 4. Треугольников

19. Боковая поверхность прямой призмы равна:

1. Произведению периметра на длину грани призмы

2. Произведению длины грани призмы на основание

3. Произведению длины грани призмы на высоту

4. Произведению периметра основания на высоту призмы

20. К правильным многогранникам относятся:

21. Радиус основания цилиндра 2,5 см, высота 12см. Найти диагональ осевого сечения.

1. 15 см; 2. 14 см; 3. 13 см.

22. Наибольший угол между образующими конуса 60 0 . Чему равен диаметр основания, если образующая равна 5 см?

1. 5 см; 2. 10 см; 3. 2,5 см.

23. Высота цилиндра равна 4 см, радиус 1 см. Найти площадь осевого сечения.

1. 9 см 2 . 2. 8 см 2 3. 16 см 2 .

24. Радиусы оснований усеченного конуса равны 6 см и 12 см, высота 8 см. Чему равна образующая конуса?

1. 10 см; 2. 4 см; 3. 6 см.