Сорбционная очистка. Процесс адсорбции. Требования, предъявляемые к адсорбентам Американский физик ввел понятие адсорбции и абсорбции

АДСОРБЦИЯ (от лат. ad-на, при и sorbeo-поглощаю), изменение (обычно-повышение) концентрации в-ва вблизи пов-сти раздела фаз ("поглощение на пов-сти"). В общем случае причина адсорбции - нескомпенсированность межмол. сил вблизи этой пов-сти, т.е. наличие адсорбц. силового поля. Тело, создающее такое поле, наз. адсорбентом , в-во, молекулы к-рого могут адсорбироваться,-а д с о р б т и в о м, уже адсорбиров. в-во-адсорбатом. Процесс, обратный адсорбции, наз. десорбцией .

Природа адсорбц. сил м. б. весьма различной. Если это ван-дер-ваальсовы силы, то адсорбция наз. физической, если валентные (т.е. адсорбция сопровождается образованием поверхностных хим. соединений), - химической, или хемосорбцией . Отличит. черты хемосорбции - необратимость, высокие тепловые эффекты (сотни кДж/моль), активированный характер. Между физ. и хим. адсорбцией существует множество промежут. случаев (напр., адсорбция, обусловленная образованием водородных связей). Возможны также разл. типы физ. адсорбции наиб. универсально проявление дисперсионных межмол. сил притяжения, т. к. они приблизительно постоянны для адсорбентов с пов-стью любой хим. природы (т. наз. неспецифич. адсорбция). Физ. адсорбция может быть вызвана электростатич. силами (взаимод. между ионами , диполями или квадруполями); при этом адсорбция определяется хим. природой молекул адсорбтива (т. наз. специфич. адсорбция). Значит. роль при адсорбции играет также геометрия пов-сти раздела: в случае плоской пов-сти говорят об адсорбции на открытой пов-сти, в случае слабо или сильно искривленной пов-сти-об адсорбции в порах адсорбента .

В теории адсорбции различают статику (система адсорбент-ад-сорбат находится в термодинамич. равновесии) и кинетику (равновесия нет).

Статика адсорбции

Т.к. система равновесна, то хим. потенциалы адсорбата и адсорбтива одинаковы; энтропия адсорбата вследствие уменьшения подвижности молекул при адсорбции меньше энтропии адсорбтива. Поэтому при инертном адсорбенте энтальпия всегда отрицательна, т.е. адсорбция экзотермична. Учет изменения энтропии адсорбента может изменить этот вывод. Напр., при сорбции полимерами в-в, в к-рых полимер набухает, энтропия последнего (из-за увеличения подвижности макромолекул) может столь сильно возрасти, что адсорбция становится эндотермической. В дальнейшем в статье рассматривается только экзотермич. адсорбция.

Различают интегральную, дифференц., изостерич. и среднюю теплоты адсорбции. Интегральная теплота Q равна убыли энтальпии (при V= const -внутр. энергии) при изменении адсорбции от a 1 до а 2 (в частном случае м.б. а 1 =0): Q= -(Н 2 - Н 1) Эту величину относят обычно к массе адсорбента и выражают в Дж/кг.

Существует еще один механизм, приводящий к дополнит. адсорбции адсорбтивов ниже их критич. т-ры на пористых адсорбентах при сравнительно высоких значениях p/p s . Это - капиллярная конденсация . Если в поре образовался вогнутый мениск адсорбата, то в ней начинается конденсация при p/p s <1. Согласно ур-нию Кельвина:

где-поверхностное натяжение адсорбата, V-его мольный объем, r-радиус кривизны мениска . Капиллярная конденсация приводит к резкому подъему изотермы адсорбции. При этом часто (но не всегда) наблюдается т. наз. адсорбц. гистерезис, т.е. несовпадение адсорбц. и десорбц. ветвей изотермы. Как правило, это связано с тем, что формы менисков при адсорбции и десорбции не совпадают.

Используя потенциальную теорию, М.М. Дубинин предложил и разработал теорию объемного заполнения микро-пор (ТОЗМ). Было постулировано, что эта теория применима только к микропористым адсорбентам . Особенность таких адсорбентов , в к-рых линейные размеры пор r1 нм, состоит в том, что весь объем их пор "заполнен" адсорбц. полем. Поэтому при адсорбции они заполняются не послойно, а объемно. Величина в рассматриваемом случае - это не адсорбц. потенциал, а с точностью до знака хим. потенциал адсорбата, отсчитываемый от уровня хим. потенциала нормальной жидкости при той же т-ре. Вся совокупность пор адсорбентов разделяется на три класса: микропоры (r0,6 нм), мезопоры (0,6 нмr20 нм) и макропоры (r20 нм). Адсорбция в микропорах происходит по схеме ТОЗМ, т.е. объемно, в мезопорах-по механизму послойного заполнения, завершаемого капиллярной конденсацией . Макропоры при адсорбц. равновесии никакой роли не играют.

Введя представление о ф-ции распределения объемов пор по значениям хим. потенциала адсорбата в них, М.М. Дубинин и Л. В. Радушкевич получили ур-ние изотермы адсорбции ТОЗМ, к-рое обычно записывают в след. форме:

где п, Е и а 0 -параметры (а 0 = а при р = p s). Температурная зависимость a 0:

где= -(da 0 /dT); a 0 0 = a 0 при Т= Т 0 . Параметры п и Е практически не зависят от т-ры. В большинстве случаев п = 2. Лишь для случаев, когда начальные теплоты адсорбции очень велики, п > 2. Для пересчета изотерм адсорбции с одного адсорбтива на другой приближенно допускают, что E 1 /E 2 P 1 /P=и что a 01 /a 02 V 1 /V 2 ,где P i -парахор, V i - мольный объем адсорбтива.

Пользуясь представлением, что в реальном адсорбенте имеются поры разных размеров, и вводя распределение значений Е с дисперсией, равной Ф. Стекли предложил обобщение ур-ния (23), названное ур-нием Дубинина-Стёкли:

Кинетика адсорбции

Адсорбция, как и любой реальный процесс, происходит во времени. Поэтому полная теория адсорбции должна содержать раздел о кинетике адсорбции. Элементарный акт адсорбции осуществляется практически мгновенно (исключение-хемосорбция). Поэтому временные зависимости адсорбции определяются в осн. механизмом диффузии , т. е. подвода адсорбтива к месту адсорбции. Если адсорбция на открытой пов-сти не мгновенна, такой процесс происходит во внешнедиффузионной области; при этом законы диффузии не специфичны для адсорбции. В случае же пористых адсорбентов , кроме внеш. диффузии , важную роль начинает играть внутр. диффузия , т.е. перенос адсорбтива в порах адсорбента при наличии в них градиента концентрации . Механизм такого переноса может зависеть от концентрации адсорбтива и размеров пор.

Различают молекулярную, кнудсеновскую и поверхностную (фольмеровскую) диффузию . Молекулярная диффузия осуществляется, если длина своб. пробега молекул в порах меньше размера пор, кнудсеновская-если эта длина превышает размер пор. При поверхностной диффузии молекулы перемещаются по пов-сти адсорбента без перехода в объемную фазу. Однако значения коэф. диффузии не одинаковы для разных механизмов диффузии . Во мн. случаях экспериментально не удается установить, как именно происходит диффузия , и поэтому вводят т. наз. эффективный коэф. диффузии , описывающий процесс в целом.

Осн. эксперим. материалом о кинетике адсорбции служит т. наз. кинетич. кривая, т.е. ф-ция= а/а равн =f(t) где-относительная адсорбция, равная отношению текущего значения адсорбции а к a равн - её значению при времени t. Для истолкования кинетич. кривой в простейшем случае предполагают, что зерно адсорбента имеет совершенно однородную по объему пористую структуру (эту модель наз. квазигомогенной). значит. усовершенствование квазигомогенной модели-представление о том, что каждое зерно содержит области с более крупными и более тонкими порами. Диффузия в таком зерне описывается двумя разл. коэффициентами.

В случае открытой пов-сти, принимая модель Ленгмюра, легко получить кинетич. ур-ние адсорбции. Скорость приближения к равновесию представляет собой разность скоростей адсорбции и десорбции . Считая, как обычно в кинетике, что скорости процессов пропорциональны концентрациям реагирующих в-в, имеем:

где k адс и k дес - константы скорости соотв. адсорбции и десорбции . Давление в газовой фазе считается постоянным. При интегрировании этого ур-ния от t = 0 до любого значения t получим:

Отсюда при f имеем:= равн. Поэтому окончательно имеем:

где k = k адс + k дес.

Влияние т-ры на скорость адсорбции выражается ур-нием, аналогичным ур-нию Аррениуса. С увеличением т-ры k адс экспоненциально возрастает. Т.к. диффузия в порах адсорбента связана с преодолением активац. барьеров, температурные зависимости k адс и k дес не одинаковы.

Знание скоростей диффузии важно не только для теории адсорбции, но и для расчета пром. адсорбц. процессов. При этом обычно имеют дело не с отдельными зернами адсорбента , а с их слоями. Кинетика процесса в слое выражается очень сложными зависимостями. В каждой точке слоя в данный момент времени величина адсорбции определяется не только видом ур-ния изотермы адсорбции и закономерностями кинетики процесса, но также аэро- или гидродинамич. условиями обтекания зерен газовым или жидкостным потоком. Кинетика процесса в слое адсорбента в отличие от кинетики в отдельном зерне наз. динамикой адсорбции, общая схема решения задач к-рой такова: составляется система дифференц. ур-ний в частных производных, учитывающая характеристики слоя, изотерму адсорбции, диффузионные характеристики (коэф. диффузии , виды переноса массы по слою и внутри зерен), аэро- и гидродинамич. особенности потока. Задаются начальные и краевые условия. Решение этой системы ур-ний в принципе приводит к значениям величин адсорбции в данный момент времени в данной точке слоя. Как правило, аналитич. решение удается получить только для простейших случаев, поэтому такая задача решается численно с помощью ЭВМ.

При опытном изучении динамики адсорбции через слой адсорбента пропускают газовый или жидкостный поток с заданными характеристиками и исследуют состав выходящего потока как ф-цию времени. Появление поглощаемого в-ва за слоем наз. проскоком, а время до проскока - временем защитного действия. Зависимость концентрации данного компонента за слоем от времени наз. выходной кривой. Эти кривые служат осн. эксперим. материалом, позволяющим судить о закономерностях динамики адсорбции.

Аппаратурное оформление адсорбционных процессов

Существует множество технол. приемов проведения адсорбц. процессов. Широко распространены циклич. (перио-дич.) установки с неподвижным слоем адсорбента , осн. узел к-рых - один или неск. адсорберов , выполненных в виде полых колонн, заполняемых гранулированным адсорбентом . Газовый (или жидкостной) поток, содержащий адсорбируемые компоненты, пропускается через слой адсорбента до проскока. После этого адсорбент в адсорбере регенерируют, а газовый поток направляют в др. адсорбер . Регенерация адсорбента включает ряд стадий, из к-рых ос новная-десорбция, т.е. выделение ранее поглощенного в-ва из адсорбента . Десорбцию проводят нагреванием, сбросом давления в газовой фазе, вытеснением (напр., острым водяным

Сорбция - (от лат. sorbeo - поглощаю), поглощение твердым телом или жидкостью какого-либо вещества из окружающей среды. Основные разновидности сорбции - адсорбция, абсорбция, хемосорбция. Поглощающее тело называется сорбентом, поглощаемое - сорбтивом (сорбатом). Важнейшие твердые сорбенты, способные к регенерации и применяемые в технике, - активные угли, силикагель, цеолиты, иониты. Сорбция в гидрометаллургии - поглощение ценных компонентов (U, Au, Mo) из растворов или пульп при выщелачивании руд и концентратов.

Различают поглощение всем объемом жидкого сорбента (абсорбция), а также твердого тела или расплава (окклюзия) и поверхностным слоем сорбента (адсорбция). Сорбция, обусловленная взаимодействием химического типа между поверхностью твердого сорбента и сорбатом, называется хемосорбцией. При сорбции паров твердыми веществами часто происходит капиллярная конденсация. Обычно протекает одновременно несколько сорбционных процессов.

Сорбция относится к действию абсорбции или адсорбции:

· Абсорбция - объёмное слияние двух веществ, находящихся в разных агрегатных состояниях (напр. жидкости, абсорбирующиеся твёрдыми телами или газами, газы, абсорбирующиеся жидкостями и т.д.).

· Адсорбция - физическое сцепление ионов и молекул на поверхности тела другого состояния (напр. реагенты адсорбируются к целой поверхности катализатора).

Обратный процесс выделения называют десорбцией.

Абсорбция

Абсорбция в химии - физический или химический феномен или процесс, при котором атомы, молекулы или ионы входят в какоё-либо объёмное состояние - газ, жидкость или твёрдое тело. Это процесс, отличный от адсорбции, поскольку молекулы, подвергающиеся абсорбции, забираются по объёму, а не по поверхности (как происходит в случае с адсорбцией). Более общий термин - сорбция, который охватывает процессы абсорбции, адсорбции и ионного обмена. Абсорбция, в основном - это где что-то присоединяет другую субстанцию.

Если абсорбция является физическим процессом, не сопровождаемым другими физическими или химическими процессами, она обычно подчиняется закону распределения Нернста:

при равновесии отношение концентраций третьего компонента в двух жидких состояниях является постоянной величиной.";

Объём постоянной K N зависит от температуры и называется коэффициентом распределения. Это равенство верно при условии, что концентрации не слишком велики и если молекулы "х" не меняют свою форму в любом другом из двух состояний. Если такая молекула подвергается ассоциации или диссоциации, тогда это равенство всё так же описывает равновесие между "х" в обоих состояниях, но только для той же формы - концентрации всех оставшихся форм должны быть рассчитаны с учетом всех остальных равновесий.

В случае газовой абсорбции можно рассчитать концентрацию используя например Закон идеального газа, c = p/RT. В качестве альтернативы можно использовать парциальное давление вместо концентраций. Во многих технологически важных процессах, химическая абсорбция используется вместо физического процесса, например абсорбция углекислого газа гидроксидом натрия - такие процессы не следуют закону распределения Нернста.

Для некоторых примеров этого эффекта можно рассмотреть экстракцию, при которой можно извлечь из одной жидкой фазы раствор и перенести в другую без химической реакции. Примеры таких растворов - благородные газы и оксид осмия.

Рис.1 Лабароторный абсорбер. 1a): впуск CO 2 ; 1b):впуск H 2 O; 2): выпуск; 3): абсорбционная колонна; 4): наполнитель

Адсорбция

Адсорбция (лат. ad -- на, при; sorbeo -- поглощаю) -- процесс сгущения газообразного или растворенного вещества на поверхности раздела фаз. Адсорбция -- частный случай сорбции.

Поглощаемое вещество, ещё находящееся в объёме фазы, называют адсорбтив, поглощённое -- адсорбат. В более узком смысле под адсорбцией часто понимают поглощение примеси из газа или жидкости твёрдым веществом -- адсорбентом. При этом, как и в общем случае адсорбции, происходит концентрирование примеси на границе раздела адсорбент-жидкость либо адсорбент-газ. Процесс, обратный адсорбции, то есть перенос вещества с поверхности раздела фаз в объём фазы, называется десорбция.

Абсорбцией называется процесс разделения, основанный на избирательном поглощении газов или паров жидкими поглотителями - адсорбентами.

При физической абсорбции поглощаемый газ (абсорбтив) не взаимодействует химически с абсорбентом. Если же абсорбтив образует с абсорбентом химическое соединение, то процесс называется хемосорбцией.

Физическая абсорбция обратима. На этом свойстве абсорбционных процессов основано выделение поглощенного газа из раствора - десорбция.

Сочетание абсорбции и десорбции позволяет многократно применять поглотитель (абсорбент) и выделять поглощенный компонент в чистом виде.

Примерами использования процессов абсорбции в химической технологии и технике могут быть разделение углеводородных газов на нефтеперерабатывающих установках, получение соляной кислоты, аммиачной воды, очистка отходящих газов с целью улавливания ценных продуктов или обезвреживание газовых выбросов и т. п.

Адсобция

Адсорбция- увеличение концентрации растворенного вещества у поверхности раздела двух фаз (твердая фаза-жидкость, конденсированная фаза - газ) вследствие нескомпенсированности сил межмолекулярного взаимодействия на разделе фаз. Адсорбция является частным случаем сорбции, процесс, обратный адсорбции - десорбция.

Основные понятия

Поглощаемое вещество, ещё находящееся в объёме фазы, называют адсорбтив, поглощённое -- адсорбат. В более узком смысле под адсорбцией часто понимают поглощение примеси из газа или жидкости твёрдым веществом (в случае газа и жидкости) или жидкостью (в случае газа) -- адсорбентом. При этом, как и в общем случае адсорбции, происходит концентрирование примеси на границе раздела адсорбент-жидкость либо адсорбент-газ. Процесс, обратный адсорбции, то есть перенос вещества с поверхности раздела фаз в объём фазы, называется десорбция. Если скорости адсорбции и десорбции равны, то говорят об установлении адсорбционного равновесия. В состоянии равновесия количество адсорбированных молекул остается постоянным сколь угодно долго, если неизменны внешние условия (давление, температура и состав системы)

Физическая адсорбция

Причиной адсорбции являются неспецифические (то есть не зависящие от природы вещества)Ван-дер-Ваальсовы силы. Адсорбция, осложнённая химическим взаимодействием между адсорбентом и адсорбатом, является особым случаем. Явления такого рода называютхемосорбцией и химической адсорбцией. «Обычную» адсорбцию в случае, когда требуется подчеркнуть природу сил взаимодействия, называют физической адсорбцией.

Адсорбция -- всеобщее и повсеместное явление, имеющее место всегда и везде, где есть поверхность раздела между фазами. Наибольшее практическое значение имеет адсорбция поверхностно-активных веществ и адсорбция примесей из газа либо жидкости специальными высокоэффективными адсорбентами. В качестве адсорбентов могут выступать разнообразные материалы с высокой удельной поверхностью: пористый углерод (наиболее распространённая форма --активированный уголь), силикагели, цеолиты а также некоторые другие группы природных минералов и синтетических веществ.

Адсорбция (особенно хемосорбция) имеет также важное значение в гетерогенном катализе. Пример адсорбционных установок приведён на странице азотные установки.

Установка для проведения адсорбции называется адсорбером.

Кристаллизация

Кристаллизация- получение (образование) вещества в кристаллическом виде. Из трех главнейших случаев образования кристаллов--при возгонке, из расплавленного состояния, из растворов--последний имеет наибольшее значение. Обычно пользуются:

  • 1. Медленным испарением растворителя.
  • 2.. Добавлением третьего вещества, смешивающегося с растворителем и уменьшающего растворимость в нем кристаллизуемого вещества; к раствору (обычно горячему) прибавляют осадителя до появления мути и оставляют стоять; так например к спиртовому раствору прибавляют воду, к эфирному раствору -- петролейный эфир, к фенолу--спирт и т. д.
  • 3. Охлаждением насыщенного горячего раствора; вещество растворяют в подходящем растворителе при нагревании и помешивании, причем берут растворителя лишь немногим больше, чем нужно для растворения, и фильтруют горячим (лучше через нагревательную воронку); при охлаждении выделяются кристаллы.

Покой и медленное остывание способствуют росту кристаллов, однако величина кристаллов зависит также от природы вещества. При желании получить количество кристаллов большее, чем это возможно при охлаждении до комнатной t°, пользуются охладительной смесью, но при этом необходимо применять в качестве растворителя жидкости, не замерзающие при низкой t°, напр. сероуглерод, спирт, эфир, петролейный эфир. Часто бывает возможным вызвать К. вещества, выделившегося в виде масла, внося в него («заражая») кристаллик этого вещества, а иногда даже вещества, близкого ему по хим. строению. Потирание стенки сосуда стеклянной палочкой также ускоряет или вызывает К. Применяется К. с целью очищения вещества или получения его свежевыкристаллизованным с содержанием определенного количества «кристаллизационного» растворителя--воды, спирта, хлороформа и др.

В нек-рых случаях для выделения вещества в химически индивидуальном виде прибегают к К. его хорошо кристаллизующихся простейших производных: солей, ацетильных, бензольных и др. производных. Очень редким является образование хорошо кристаллизующегося двойного соединения индиферентного органического вещества, напр. соединения глюкозы и хлористого натрия: 2С6Н1206 + МаС1 + НгО. Некоторые вещества, например белки, могут быть получены в кристаллической форме высаливанием (см.). При очищении вещества К. (нередко многократно) исходят из того предположения, что кристаллизующееся вещество может быть отделено от примеси вследствие неодинаковой растворимости в подходящем растворителе. В нек-рых случаях удается получить чистое вещество лишь фракционированной К. Наблюдаются случаи неразделимых кристаллизацией смесей и образование смешанных кристаллов.--К. обычно ведут в кристаллизаторах--тонкостенных низких стаканах--или в чашках.-- Полученные кристаллы освобождают от маточного раствора промыванием на Бухнеров-ской воронке или выкладывают их на не-глазированную фарфоровую пластинку или фильтровальную бумагу, впитывающие маточный раствор, и, если нужно, отжимают между листьями фильтровальн. бумаги.

При сгущении маточного раствора или при добавлении к нему осадителя или совместным действием того и другого могут быть получены дальнейшие порции кристаллов. При выборе растворителя необходимо иметь в виду, чтобы он не влиял химически на подлежащие кристаллизации вещества и не содержал вредящих К. примесей и чтобы в случае К. охлаждением горячего раствора растворимость вещества в горячем растворителе достаточно резко отличалась от растворимости в холодном. Наиболее употребительными растворителями являются вода, этиловый, метиловый и амиловый ал-коголи, эфир, бензол, хлороформ, ацетон, уксусная к-та, петролейный эфир, фенол, пиридин, сероуглерод, H2S04 и друг.

Для микроскоп, исследования вещество выкристаллизовывают на предметном стекле, т. к. даже при осторожном переносе на предметное стекло кристаллы повреждаются. На предметное стекло наносят каплю концентрированного раствора испытуемого вещества, закрывают покровным стеклом и оставляют на воздухе или, если вещество легко расплывается, в эксикаторе и исследуют образовавшиеся кристаллы под микроскопом.

Процесс самопроизвольного концентрирования газов или растворенных веществ на поверхности раздела фаз называют адсорбцией . В зависимости от природы контактирующих фаз различают адсорбцию на границах: газ - твердое тело, газ – жидкость, жидкость - твердое тело и жидкость - жидкость.

Еще в 1785 г русский ученый Т.Е. Ловиц открыл способность угля поглощать растворенное вещество. С тех пор изучению явлений адсорбции было посвящено много работ, среди которых первостепенное значение имеют работы русских ученых: академика Н.Д.Зелинского, предложившего уголь в качестве универсального средства защиты от газообразных отравляющих веществ; М.С.Цвета, разработавшего хроматографический метод разделения веществ по их адсорбционной способности; академика К.К. Гедройца, создавшего учение о поглотительной способности почв; академика М.М. Думанского, разработавшего методику получения активных адсорбентов. Очень много для разработки теории и практики адсорбции сделали зарубежные ученые Гиббс, Ленгмюр, Фрейндлих, Поляни, Бранауэр и др.

Адсорбция является следствием снижения ненасыщенности молекулярных, атомных или ионных сил на поверхности раздела фаз и обусловлена накоплением вещества, снижающего свободную поверхностную энергию. Адсорбция – процесс самопроизвольный , т.к. в результате процесса адсорбции происходит уменьшение свободной поверхностной энергии, а по второму закону термодинамики такие процессы являются самопроизвольными.

Вещества, которые адсорбируются, называют адсорбатами (иногда - адсорбтивами), а вещества, которые адсорбируют на своей поверхности - адсорбентами .

В зависимости от характера сил, действующих между частицами (молекулы, атомы, ионы) адсорбата и адсорбента, различают физическую или ван-дер-ваальсову адсорбцию и химическую или хемосорбцию.

Природу адсорбции можно установить, исследовав её кинетику и энергетику. Действительно, физическая адсорбция происходит под влиянием относительно слабых межмолекулярных сил сцепления (сил Ван-дер-Ваальса) и по своей природе аналогична процессам конденсации паров адсорбата, теплота её близка к теплотам конденсации и составляет 10 - 50 кДж/моль. Поэтому при увеличении температуры физическая адсорбция уменьшается.

Хемосорбция связана с перекрыванием электронных орбиталей частиц адсорбата и адсорбента, т.е. вызывается их химическим взаимодействием, не приводящим, однако, к образованию объемной фазы. Теплота хемосорбции соизмерима с теплотами химических реакций и составляет обычно 60 - 600 кДж/моль. Химическая адсорбция с увеличением температуры увеличивается.

Адсорбция представляет собой обратимый процесс. Процесс, обратный адсорбции, называется десорбцией.


Различают молекулярную и ионную хемосорбцию в зависимости от того, что адсорбируется – молекулы или ионы вещества. В свою очередь, ионная адсорбция делится на обменную и адсорбцию потенциалопределяющих ионов.

Обменная адсорбция . Обменная адсорбция протекает на границе твердое тело / раствор электролита и состоит в том, что адсорбент и раствор обмениваются между собой катионами или анионами в эквивалентных количествах, благодаря чему принцип электронейтральности раствора электролита и адсорбента остается ненарушенным.

Основными факторами обменной адсорбции, определяющими ее специфичность, являются: наличие двойного электрического слоя на поверхности твердого адсорбента, валентность, величина радиуса и степень гидратации ионов раствора электролита.

Обменная адсорбция протекает несколько медленнее, чем обычная.

Для уяснения процесса обменной адсорбции можно рассмотреть процесс образования двойного электрического слоя при взаимодействии частицы хлористого серебра с раствором хлорида калия. Ионы хлора, сталкиваясь с частицами n будут соединяться с ионами серебра, образуя прочно удерживаемый слой С1- ионов, тем самым заряжая поверхность частицы. Такие ионы получили название потенциалопределяющих, а т.к. присоединившиеся С1 - -ионы увеличивают свою концентрацию, т.е. адсорбируются на поверхности, то такой вид адсорбции называется адсорбцией потенциалопределяющих ионов.

Адсорбированные С1 - -ионы заряжают частицу отрицательно, и под действием электростатических сил притяжения будет увеличиваться количество К + -ионов, прилегающих к поверхности частицы. Другими словами, будет происходить адсорбция противоионов под действием электростатических сил. Так как К + -ионы могут быть заменены другими ионами такого же знака, взаимодействующими с частицей лишь электростатически, такие ионы называются обменными, адсорбция их - обменной.

Таким образом, обменная адсорбция происходит в процессе обмена ионов двойного электрического слоя адсорбента и ионов раствора. Схематически это можно представить следующими уравнениями:

Адсорбент - ½Н + + Na + + Cl - à Адсорбент - ½Na + + H + +Cl -

Адсорбент + ½OH - + Na + + Cl - à Адсорбент + ½Cl - + Na + + OH -

Из приведенной схемы видно, что в ходе адсорбции ионов может изменяться рН среды (в раствор переходят H + или OH - ионы), раствор приобретает кислую или щелочную реакцию, такой вид адсорбции называется гидролитический.

Так как обменная адсорбция является химической, то обмен ионов происходит в строго эквивалентных соотношениях.

Обменные ионы на твердой поверхности обладают определенной величиной и знаком заряда, поэтому, чтобы не нарушался двойной электрический слой (ДЭС), обменными ионами из раствора, могут быть только ионы одного и того же знака. При этом не должна изменяться и величина заряда поверхности. Таким образом, обменная адсорбция может быть только анионообменной или катионообменной.

Явления обменной адсорбции играют важную роль в процессах, происходящих в почвах. Обменным комплексом почв является почвенный поглощающий комплекс (ППК), состоящий из коллоидных частиц, заряженных отрицательно. Обменными ионами почвы являются катионы. Важнейшие свойства почвы: водопроницаемость, влагоемкость, набухаемость, структура, рН почвенного раствора и др. – определяются составом адсорбированных ионов. Например, почвы, содержащие в составе обменных катионов значительное количество ионов натрия, приобретают особые, так называемые, “солонцовые свойства”. Они отличаются высокой дисперсностью, плотным сложением, высокой щелочностью, повышенной набухаемостью и вязкостью, малой водопроницаемостью. Эти почвы трудно обрабатываются и, несмотря на большой запас питательных веществ, мало плодородны. Если же в состав обменных катионов почвы входят преимущественно ионы кальция, то такие почвы обладают хорошей структурой, малой распыленностью, хорошей водо- и воздухопроницаемостью. Эти почвы относятся к наиболее плодородным. Примером почв с большим содержанием обменного кальция и прекрасными физико-химическими свойствами являются черноземные почвы.

Ионообменные процессы в почвах можно представить следующей схемой:

[ППК] - 2Na + + Са 2+ + SO 4 2- = [ППК] - Cа 2+ + Na 2 SO 4

Б.П. Никольский и Е.Н. Гапон предложили уравнение, описывающее обменную адсорбцию:

Здесь g 1 и g 2 – количество г-моль (г-экв) адсорбированных и десорбированных ионов единицей массы адсорбента, а 1 и а 2 – активности обменивающихся ионов в растворе при равновесии; z 1 и z 2 – заряд ионов, К – константа данного адсорбционного процесса.

Явление адсорбции находит широкое применение в промышленности и сельском хозяйстве. Так, на активированном угле производят адсорбционную очистку (рафинирование) сиропа сахарозы. Именно силы адсорбции удерживают ионы минеральных удобрений (К + , РО 4 -3 и т.п.) и молекулы (мочевины) в почве. Адсорбция мочевины физическая, молекулы её слабо удерживаются почвой. Поэтому мочевину, чтобы её не вынесло весенним паводком, вносят обычно весной. Калийные удобрения можно вносить в почву и осенью, так как адсорбция ионов К + вызывается химическими силами (ионные связи) и она прочная.

В общем случае адсорбция является функцией давления Р (для газов) или концентрации С (для жидких растворов) и температуры, т.е. изображается плоскостью в координатах Г = f(C,T). Обычно один из параметров поддерживают постоянным и адсорбцию графически изображают в виде кривых.

Количественная зависимость, устанавливаемая между адсорбентом и адсорбтивом при постоянной температуре в виде уравнения или кривой, называется изотермой адсорбции .

Cуществует несколько типов изотерм адсорбции - простейшими уравнениями для описания адсорбции являются уравнение Фрейндлиха и уравнение Ленгмюра .

Изотерма адсорбции по Фрейндлиху . Адсорбция растворенного вещества на твердой поверхности подчиняется определенной закономерности, согласно которой концентрация адсорбированного вещества возрастает не пропорционально его концентрации в растворе, а значительно медленнее, и пропорциональна корню n-ой степени из концентрации раствора. Эта зависимость при постоянной температуре может быть представлена следующем уравнением:

Х/m = К С 1/ n

где Х – количество (моль) вещества, адсорбированного m г адсорбента: С- равновесная концентрация; К и 1/n – эмпирические константы, характерные для данных адсорбента и адсорбата, значение 1/n колеблется между 0,1 – 0,7. Данное уравнение известно под названием изотермы адсорбции и имеет вид параболы.

Для графического построения изотермы адсорбции по Фрейндлиху на оси абсцисс откладывается равновесная концентрация в ммоль/л, а на оси ординат – величина адсорбции на единицу поверхности Х/m в ммоль/грамм. На рисунке 7 показано графическое изображение уравнения Фрейндлиха.