История вирусологии. Принципы классификации вирусов Вирусология наука, изучающая морфологию, физиологию, генетику, экологию и эволюцию вирусов


Введение

Общая вирусология изучает природу вирусов, их строение, размножение, биохимию, генетику. Медицинская, ветеринарная и сельскохозяйственная вирусология исследует патогенные вирусы, их инфекционные свойства, разрабатывает меры предупреждения, диагностики и лечения вызываемых ими заболеваний.

Вирусология решает фундаментальные и прикладные задачи и тесно связана с другими науками. Открытие и изучение вирусов, в частности бактериофагов, внесло огромный вклад в становление и развитие молекулярной биологии. Раздел вирусологии, изучающий наследственные свойства вирусов, тесно связан с молекулярной генетикой. Вирусы не только предмет изучения, но и инструмент молекулярно-генетических исследований, что связывает вирусологию с генетической инженерией. Вирусы - возбудители большого количества инфекционных заболеваний человека, животных, растений, насекомых. С этой точки зрения вирусология тесно связана с медициной, ветеринарией, фитопатологией и другими науками.

Возникнув в конце XIX века как ветвь патологии человека и животных, с одной стороны, и фитопатологии - с другой, вирусология стала самостоятельной наукой, по праву занимающей одно из основных мест среди биологических наук.

Глава 1. История вирусологии

1.1. Открытие вирусов

Вирусология - молодая наука, ее история насчитывает немногим более 100 лет. Начав свой путь как наука о вирусах, вызывающих болезни человека, животных и растений, в настоящее время вирусология развивается в направлениях изучения основных законов современной биологии на молекулярном уровне, основываясь на том, что вирусы являются частью биосферы и важным фактором эволюции органического мира.

История вирусологии необычна тем, что один из ее предметов - вирусные болезни - стал изучаться задолго до того, как были открыты собственно вирусы. Начало истории вирусологии - это борьба с инфекционными заболеваниями и только впоследствии - постепенное раскрытие источников этих болезней. Подтверждением тому служат работы Эдуарда Дженнера (1749-1823 гг.) по предупреждению оспы и работы Луи Пастера (1822-1895 гг.) с возбудителем бешенства.

С незапамятных времен оспа была бичом человечества, унося тысячи жизней. Описания оспенной заразы встречаются в рукописях древнейших китайских и индийских текстов. Первые упоминания об эпидемиях оспы на европейском континенте датируются VI столетием нашей эры (эпидемия среди солдат эфиопской армии, осаждавшей Мекку), после чего наблюдался необъяснимый период времени, когда упоминания об эпидемиях оспы отсутствовали. Оспа снова начала гулять по континентам в XVII веке. Например, в Северной Америке (1617-1619 гг.) в штате Массачусетс погибло 9/10 населения, в Исландии (1707 г.) после эпидемии оспы от 57 тыс. человек осталось только 17 тыс., в г. Истхем (1763 г.) от 1331 жителя осталось 4 человека. В связи с этим, проблема борьбы с оспой стояла очень остро.

Методика предупреждения оспы через прививку, называемая вариоляцией, была известна с давних времен. Упоминания о применении вариоляции в Европе датируются серединой 17-го века со ссылками на более ранний опыт применения в Китае, на Дальнем Востоке, в Турции. Суть вариоляции заключалась в том, что содержимое пустул от пациентов, болевших легкой формой оспы, вносили в маленькую ранку на коже человека, что вызывало легкое заболевание и предупреждало острую форму. Однако при этом сохранялась большая опасность заболевания тяжелой формой оспы и смертность среди привитых достигала 10%. Дженнер совершил переворот в методике предупреждения оспы. Он первый обратил внимание на то, что люди, переболевшие коровьей оспой, которая протекала легко, впоследствии никогда не болели оспой. 14 мая 1796 г. Дженнер внес в ранку Джеймса Фипса, никогда не болевшего оспой, жидкость из пустул больной коровьей оспой доярки Сары Селмес. На месте искусственной инфекции у мальчика появились типичные пустулы, которые через 14 дней исчезли. Тогда Дженнер внес в ранку мальчика высокоинфекционный материал из пустул больного оспой. Мальчик не заболел. Так зародилась и подтвердилась идея вакцинации (от латинского слова vacca - корова). Во времена Дженнера вакцинация понималась как внесение инфекционного материала коровьей оспы в организм человека с целью предотвращения заболевания натуральной оспой. Термин вакцина применяли к веществу, предохранявшему от оспы. С 1840 г. противооспенную вакцину стали получать заражением телят. Вирус оспы человека был открыт только в 1904 г. Таким образом, оспа - это первая инфекция, против которой была применена вакцина, т. е. первая управляемая инфекция. Успехи в вакцинопрофилактике черной оспы привели к ее искоренению в мировом масштабе.

В наше время вакцинация и вакцина употребляются как общие термины, обозначающие прививку и прививочный материал.

Пастер, по существу не знавший ничего конкретного о причинах бешенства, кроме неоспоримого факта его инфекционной природы, использовал принцип ослабления (аттенуации) возбудителя. В целях ослабления болезнетворных свойств возбудителя бешенства был использован кролик, в мозг которого ввели мозговую ткань умершей от бешенства собаки. После смерти кролика мозговая ткань его была введена следующему кролику и т. д. Было проведено около 100 пассажей, прежде чем возбудитель адаптировался к ткани мозга кролика. Будучи введен подкожно в организм собаки, он проявлял лишь умеренные свойства патогенности. Такой «перевоспитанный» возбудитель Пастер назвал «фиксированным», в отличие от «дикого», которому свойственна высокая патогенность. Позднее Пастер разработал метод создания иммунитета, состоящий из серии инъекций с постепенно увеличивающимся содержанием фиксированного возбудителя. Собака, прошедшая полный курс инъекций, оказалась в полной мере устойчивой к инфекции. Пастер пришел к выводу, что процесс развития инфекционной болезни, по существу, является борьбой микробов с защитными силами организма. «Каждая болезнь должна иметь своего возбудителя, а мы должны способствовать развитию иммунитета к этой болезни в организме пациента», - говорил Пастер. Еще не понимая, каким образом организм вырабатывает иммунитет, Пастер сумел использовать его принципы и направить механизмы этого процесса на пользу человека. В июле 1885 г. Пастеру представился случай испытать свойства «фиксированного» возбудителя бешенства на ребенке, укушенном бешеной собакой. Мальчику была проведена серия инъекций все более ядовитого вещества, причем последняя инъекция содержала уже полностью патогенную форму возбудителя. Мальчик остался здоров. Вирус бешенства был открыт Ремленже в 1903 г.

Следует отметить, что ни вирус оспы, ни вирус бешенства не были первыми открытыми вирусами, поражающими животных и человека. Первое место по праву принадлежит вирусу ящура, открытому Леффлером и Фрошем в 1898 г. Эти исследователи, используя многократные разведения фильтрующегося агента, показали его ядовитость и сделали заключение о его корпускулярной природе.

К концу XIX-го столетия выяснилось, что целый ряд заболеваний человека, таких как бешенство, оспа, грипп, желтая лихорадка являются инфекционными, однако их возбудители не обнаруживались бактериологическими методами. Благодаря работам Роберта Коха (1843-1910 гг.), который впервые использовал технику чистых бактериальных культур, появилась возможность различать бактериальные и небактериальные заболевания. В 1890 г. на X конгрессе гигиенистов Кох вынужден был заявить, что «…при перечисленных болезнях мы имеем дело не с бактериями, а с организованными возбудителями, которые принадлежат к совсем другой группе микроорганизмов». Это высказывание Коха свидетельствует, что открытие вирусов не было случайным событием. Не только опыт работы с непонятными по своей природе возбудителями, но и понимание сущности происходящего способствовали тому, что была сформулирована мысль о существовании оригинальной группы возбудителей инфекционных заболеваний небактериальной природы. Оставалось экспериментально доказать ее существование.

Первое экспериментальное доказательство существования новой группы возбудителей инфекционных заболеваний было получено нашим соотечественником - физиологом растений Дмитрием Иосифовичем Ивановским (1864-1920 гг.) при изучении мозаичных заболеваний табака. Это неудивительно, так как инфекционные заболевания эпидемического характера часто наблюдались и у растений. Еще в 1883-84 гг. голландский ботаник и генетик де Фриз наблюдал эпидемию позеленения цветов и предположил инфекционную природу заболевания. В 1886 г. немецкий ученый Майер, работавший в Голландии, показал, что сок растений, больных мозаичной болезнью, при инокуляции вызывает у растений такое же заболевание. Майер был уверен, что виновником болезни является микроорганизм, и безуспешно искал его. В 19 веке заболевания табака наносили огромный вред сельскому хозяйству и в нашей стране. В связи с этим, для изучения заболеваний табака на Украину была направлена группа исследователей, в которую, будучи студентом Петербургского университета, входил Д.И. Ивановский. В результате изучения заболевания, описанного в 1886 г. Майером как мозаичная болезнь табака, Д.И. Ивановский и В.В. Половцев пришли к выводу, что оно представляет собой два различных заболевания. Одно из них - «рябуха» - вызывается грибком, а другое - неизвестного происхождения. Изучение мозаичной болезни табака было продолжено Ивановским в Никитском ботаническом саду под руководством академика А.С. Фамицина. Используя сок пораженного болезнью листа табака, профильтрованный через свечу Шамберлана, задерживающую самые мелкие бактерии, Ивановский вызвал заболевание листьев табака. Культивирование зараженного сока на искусственных питательных средах не дало результатов и Ивановский приходит к выводу, что возбудитель болезни имеет необычную природу - он фильтруется через бактериальные фильтры и не способен расти на искусственных питательных средах. Прогревание сока при 60-70 °C лишало его инфекционности, что свидетельствовало о живой природе возбудителя. Ивановский сначала назвал новый тип возбудителя «фильтрующиеся бактерии». Результаты работы Д.И. Ивановского были положены в основу его диссертации, представленной в 1888 г., и опубликованы в книге «О двух болезнях табака» в 1892 году. Этот год и считается годом открытия вирусов.

Определенный период времени в зарубежных публикациях открытие вирусов связывали с именем голландского ученого Бейеринка (1851-1931 гг.), который также занимался изучением мозаичной болезни табака и опубликовал свои опыты в 1898 г. Профильтрованный сок зараженного растения Бейеринк поместил на поверхность агара, проинкубировал и получил на его поверхности бактериальные колонии. После этого верхний слой агара с колониями бактерий был удален, а внутренний слой был использован для заражения здорового растения. Растение заболело. Из этого Бейеринк сделал вывод, что причиной заболевания являются не бактерии, а некая жидкая субстанция, которая могла проникнуть внутрь агара, и назвал возбудителя «жидкий живой контагий». В связи с тем, что Ивановский только подробно описал свои опыты, но не уделил должного внимания небактериальной природе возбудителя, возникло недопонимание ситуации. Известность работы Ивановского приобрели только после того, как Бейеринк повторил и расширил его опыты и подчеркнул, что Ивановский впервые доказал именно небактериальный характер возбудителя самой типичной вирусной болезни табака. Сам Бейеринк признал первенство Ивановского и в настоящее время приоритет открытия вирусов Д.И. Ивановским признан во всем мире.

Слово ВИРУС означает яд. Этот термин применял еще Пастер для обозначения заразного начала. Следует отметить, что в начале 19 века все болезнетворные агенты назывались словом вирус. Только после того, как стала понятна природа бактерий, ядов и токсинов терминами «ультравирус», а затем просто «вирус» стали обозначать «новый тип фильтрующегося возбудителя». Широко термин «вирус» укоренился в 30-е годы нашего столетия.

В настоящее время ясно, что вирусы характеризуются убиквитарностью, то есть повсеместностью распространения. Вирусы поражают представителей всех царств живого: человека, позвоночных и беспозвоночных животных, растения, грибы, бактерии.

Первое сообщение, имеющее отношение к вирусам бактерий было сделано Ханкин в 1896 г. В Летописи Института Пастера он заявил, что «... вода некоторых рек Индии обладает бактерицидным действием...», что без сомнения связано с вирусами бактерий. В 1915 г. Туорт в Лондоне, изучая причины лизиса бактериальных колоний, описал принцип передачи «лизиса» новым культурам в ряду поколений. Его работы, как это часто бывает, фактически оказались не замеченными, и два года спустя, в 1917 г., канадец де Эрелль повторно обнаружил явление лизиса бактерий, связанного с фильтрующимся агентом. Он назвал этот агент бактериофагом. Де Эрелль предполагал, что бактериофаг один. Однако исследования Барнета, работавшего в Мельбурне в 1924-34 гг., показали широкое разнообразие бактериальных вирусов по физическим и биологическим свойствам. Открытие многообразия бактериофагов вызвало большой научный интерес. В конце 30-х годов трое исследователей - физик Дельбрюк, бактериологи Лурия и Херши, работавшие в США, создали так называемую «Фаговую группу», исследования которой в области генетики бактериофагов в конечном итоге привели к рождению новой науки - молекулярной биологии.

Изучение вирусов насекомых существенно отстало от вирусологии позвоночных животных и человека. В настоящее время ясно, что вирусы, поражающие насекомых, условно можно разделить на 3 группы: собственно вирусы насекомых, вирусы животных и человека, для которых насекомые являются промежуточными хозяевами, и вирусы растений, которые также поражают насекомых.

Первый вирус насекомых, который был идентифицирован - вирус желтухи шелковичного червя (вирус полиэдроза тутового шелкопряда, названный Bollea stilpotiae). Еще в 1907 г. Провачек показал, что фильтрованный гомогенат больных личинок является инфекционным для здоровых личинок тутового шелкопряда, но только в 1947 г. немецкий ученый Бергольд обнаружил палочковидные вирусные частицы.

Одним из наиболее плодотворных исследований в области вирусологии является изучение Ридом природы желтой лихорадки на волонтерах армии США в 1900-1901 гг. Убедительно было продемонстрировано, что желтая лихорадка вызывается фильтрующимся вирусом, который передавался комарами и москитами. Было также установлено, что москиты после впитывания инфекционной крови в течение двух недель остаются неинфекционными. Таким образом, был определен внешний инкубационный период заболевания (время, необходимое для репродукции вируса в насекомом) и установлены основные принципы эпидемиологии арбовирусных инфекций (вирусных инфекций, передаваемых кровососущими членистоногими).

Способность размножения вирусов растений в своем переносчике - насекомом была показана в 1952 г. Мараморошу. Исследователь, используя технику инъекций насекомым, убедительно показал способность вируса желтухи астр размножаться в своем переносчике - шеститочечной цикаде.

1.2. Этапы развития вирусологии

История достижений вирусологии напрямую связана с успехами развития методической базы исследований.

^ Конец XIX - начало XX-го века. Основным методом идентификации вирусов в этот период был метод фильтрации через бактериологические фильтры (свечи Шамберлана), которые использовались как средство разделения возбудителей на бактерии и небактерии. С использованием фильтруемости через бактериологические фильтры были открыты следующие вирусы:

1892 г. - вирус табачной мозаики;

1898 г. - вирус ящура;

1899 г. - вирус чумы рогатого скота;

1900 г. - вирус желтой лихорадки;

1902 г. - вирус оспы птиц и овец;

1903 г. - вирус бешенства и вирус чумы свиней;

1904 г. - вирус оспы человека;

1905 г. - вирус чумы собак и вирус вакцины;

1907 г. - вирус денге;

1908 г. - вирус оспы и трахомы;

1909 г. - вирус полиомиелита;

1911 г. - вирус саркомы Рауса;

1915 г. - бактериофаги;

1916 г. - вирус кори;

1917 г. - вирус герпеса;

1926 г. - вирус везикулярного стоматита.

30-е годы - основным вирусологическим методом, используемым для выделения вирусов и их дальнейшей идентификации, являются лабораторные животные (белые мыши - для вирусов гриппа, новорожденные мыши - для вирусов Коксаки, шимпанзе - для вируса гепатита B, куры, голуби - для онкогенных вирусов, поросята-гнотобионты - для кишечных вирусов и т. д.). Первым, кто начал систематически использовать лабораторных животных при изучении вирусов, был Пастер, который еще в 1881 г. проводил исследования по инокуляции материала от больных бешенством в мозг кролика. Другая веха - работы по изучению желтой лихорадки, следствием которых явилось использование в вирусологической практике новорожденных мышей. Кульминацией этого цикла работ стало выделение Сайклзом в 1948 г. на мышах-сосунках группы вирусов эпидемической миалгии.

1931 г. - в качестве экспериментальной модели для выделения вирусов стали использоваться куриные эмбрионы, которые обладают высокой чувствительностью к вирусам гриппа, оспы, лейкоза, саркомы кур и некоторым другим вирусам. И в настоящее время куриные эмбрионы широко используются для выделения вирусов гриппа.

1932 г. - английский химик Элфорд создает искусственные мелкопористые коллоидные мембраны - основу для метода ультрафильтрации, с помощью которого стало возможным проводить определение размера вирусных частиц и дифференцировать вирусы по этому признаку.

1935 г. - применение метода центрифугирования дало возможность кристаллизации вируса табачной мозаики. В настоящее время методы центрифугирования и ультрацентрифугирования (ускорение на дне пробирки превышает 200000 g) широко используются для выделения и очистки вирусов.

В 1939 г. для изучения вирусов впервые был применен электронный микроскоп, обладающий разрешающей способностью 0,2-0,3 нм. Использование ультратонких срезов тканей и метода негативного контрастирования водных суспензий позволило проводить изучение взаимодействия вирусов с клеткой и исследовать структуру (архитектуру) вирионов. Сведения, полученные с помощью электронного микроскопа, были значительно расширены с помощью рентгеноструктурного анализа кристаллов и псевдокристаллов вирусов. Совершенствование электронных микроскопов завершилось созданием сканирующих микроскопов, позволяющих получать объемные изображения. С использованием метода электронной микроскопии изучена архитектура вирионов, особенности их проникновения в клетку хозяина.

В этот период была открыта основная масса вирусов. В качестве примера могут быть приведены следующие:

1931 г. - вирус гриппа свиней и вирус западного энцефаломиелита лошадей;

1933 г. - вирус гриппа человека и вирус восточного энцефаломиелита лошадей;

1934 г. - вирус паротита;

1936г. - вирус рака молочной железы мышей;

1937г. - вирус клещевого энцефалита.

40-е годы. В 1940 г. Хогланд с коллегами установили, что вирус осповакцины содержит ДНК, но не РНК. Стало очевидным, что вирусы отличаются от бактерий не только размерами и неспособностью расти без клеток, но и тем, что они содержат только один вид нуклеиновой кислоты - ДНК или РНК.

1941 г. - американский ученый Херст на модели вируса гриппа открыл феномен гемагглютинации (склеивания эритроцитов). Это открытие легло в основу разработки методов выявления и идентификации вирусов и способствовало изучению взаимодействия вируса с клеткой. Принцип гемагглютинации положен в основу ряда методов:

^ РГА - реакция гемагглютинации - применяется для обнаружения и титрования вирусов;

РТГА - реакция торможения гемагглютинации - применяется для идентификации и титрования вирусов.

1942 г. - Херст устанавливает наличие у вируса гриппа фермента, который позднее идентифицирован как нейраминидаза.

1949 г. - открытие возможности культивирования клеток животных тканей в искусственных условиях. В 1952 г. Эндерс, Уэллер и Роббинс получили Нобелевскую премию за разработку метода культуры клеток.

Введение в вирусологию метода культуры клеток явилось важным событием, давшим возможность получения культуральных вакцин. Из широко применяемых в настоящее время культуральных живых и убитых вакцин, созданных на основе аттенуированных штаммов вирусов, следует отметить вакцины против полиомиелита, паротита, кори и краснухи.

Создателями вакцин против полиомиелита являются американские вирусологи Сэбин (трехвалентная живая вакцина на основе аттенуированных штаммов полиовирусов трех серотипов) и Солк (убитая трехвалентная вакцина). В нашей стране советскими вирусологами М.П. Чумаковым и А.А. Смородинцевым разработана технология производства живой и убитой вакцин против полиомиелита. В 1988 г. Всемирная ассамблея здравоохранения поставила перед ВОЗ задачу ликвидации полиомиелита во всем мире с полным прекращением циркуляции дикого полиовируса. К настоящему времени достигнут огромный прогресс в этом направлении. Применение глобальной вакцинации против полиомиелита с применением «туровых» схем вакцинации позволило не только кардинально снизить заболеваемость, но и создать территории, свободные от циркуляции дикого полиовируса.

Открыты вирусы:

1945 г. - вирус Крымской геморрагической лихорадки;

1948 г. - вирусы Коксаки.

50-е годы. В 1952 г. Дульбекко разрабатывает метод титрования бляшек в монослое клеток эмбриона цыпленка, что позволило ввести в вирусологию количественный аспект. 1956-62 гг. Уотсон, Каспар (США) и Клуг (Великобритания) разрабатывают общую теорию симметрии вирусных частиц. Структура вирусной частицы стала одним из критериев в системе классификации вирусов.

Этот период характеризовался значительными достижениями в области бактериофагов:

Установлена индукция профага лизогенизирующих фагов (Львов и др., 1950г.);

Доказано, что инфекционность присуща фаговой ДНК, а не белковой оболочке (Херши, Чейз, 1952 г.);

Открыто явление общей трансдукции (Циндер, Ледерберг, 1952 г.).

Реконструирован инфекционный вирус табачной мозаики (Френкель-Конрад, Вильяме, Сингер, 1955-57 гг.), в 1955 г. получен в кристаллическом виде вирус полиомиелита (Шаффер, Шверд, 1955 г.).

Открыты вирусы:

1951 г. - вирусы лейкоза мышей и ECHO;

1953 г. - аденовирусы;

1954 г. - вирус краснухи;

1956 г. - вирусы парагриппа, цитомегаловирус, респираторно-синцитиальный вирус;

1957 г. - вирус полиомы;

1959 г. - вирус аргентинской геморрагической лихорадки.

60-е и последующие годы характеризуются расцветом молекулярно-биологических методов исследования. Достижения в области химии, физики, молекулярной биологии и генетики легли в основу методической базы научных исследований, которые стали применяться не только на уровне методик, но и целых технологий, где вирусы выступают не только как объект исследований, но и как инструмент. Ни одно открытие молекулярной биологии не обходится без вирусной модели.

1967 г. - Катес и МакАуслан демонстрируют присутствие в вирионе осповакцины ДНК-зависимой РНК-полимеразы. В следующем году обнаруживается РНК-зависимая РНК-полимераза у реовирусов, а затем у парамиксо- и рабдовирусов. В 1968 г. Якобсон и Балтимор устанавливают наличие у полиовирусов геномного белка, соединенного с РНК, Балтимор и Бостон устанавливают, что геномная РНК полиовируса транслируется в полипротеин.

Открыты вирусы:

1960 г. - риновирусы;

1963 г. - австралийский антиген (HBsAg).

70-е годы. Балтимор одновременно с Темином и Мизутани сообщают об открытии в составе РНК-содержащих онкогенных вирусов фермента обратной транскриптазы (ревертазы). Становится реальным изучение генома РНК содержащих вирусов.

Изучение экспрессии генов у вирусов эукариот дало фундаментальную информацию о молекулярной биологии самих эукариот - существование кэп-структуры мРНК и ее роль в трансляции РНК, наличие полиадениловой последовательности на 3"-конце мРНК, сплайсинг и роль энхансеров в транскрипции впервые выявлены при изучении вирусов животных.

1972 г. - Берг публикует сообщение о создании рекомбинантной молекулы ДНК. Возникает новый раздел молекулярной биологии - генная инженерия. Применение технологии рекомбинантных ДНК позволяет получать белки, имеющие важное значение в медицине (инсулин, интерферон, вакцины). 1975 г. - Келер и Мильштейн получают первые линии гибридов, продуцирующих моноклональные антитела (МКА). На основе МКА разрабатываются самые специфичные тест-системы для диагностики вирусных инфекций. 1976 г. - Бламберг за открытие HBsAg получает Нобелевскую премию. Установлено, что гепатит A и гепатит B вызываются разными вирусами.

Открыты вирусы:

1970 г. - вирус гепатита B;

1973 г. - ротавирусы, вирус гепатита A;

1977 г. - вирус гепатита дельта.

80-е годы. Развитие заложенных отечественным ученым Л.А. Зильбером представлений о том, что возникновение опухолей может быть связано с вирусами. Компоненты вирусов, ответственные за развитие опухолей, назвали онкогенами. Вирусные онкогены оказались в числе лучших модельных систем, помогающих изучению механизмов онкогенетической трансформации клеток млекопитающих.

1985 г. - Мюллис получает Нобелевскую премию за открытие полимеразной цепной реакции (ПЦР). Это - молекулярно-генетический метод диагностики, позволивший, кроме того, усовершенствовать технологию получения рекомбинантных ДНК и открыть новые вирусы.

Открыты вирусы:

1983 г. - вирус иммунодефицита человека;

1989 г. - вирус гепатита C;

1995 г. - с использованием ПЦР открыт вирус гепатита G.

1.3. Развитие концепции о природе вирусов

Ответы на вопросы «Что такое вирусы?» и «Какова их природа?» составляли предмет дискуссии многие годы со времени их открытия. В 20-30 гг. никто не сомневался, что вирусы являются живой материей. В 30-40 гг. считалось, что вирусы - это микроорганизмы, так как способны размножаться, обладают наследственностью, изменчивостью и приспособляемостью к меняющимся условиям среды обитания, и, наконец, подвержены биологической эволюции, которая обеспечивается естественным и искусственным отбором. В 60-е годы первые успехи молекулярной биологии определили закат концепции о вирусах как организмах. В онтогенетическом цикле вируса выделены две формы - внеклеточная и внутриклеточная. Для обозначения внеклеточной формы вируса введен термин ВИРИОН. Установлены отличия его организации от строения клеток. Обобщены факты, указывающие на совершенно отличный от клеток тип размножения, названный дисъюнктивная репродукция. Дисъюнктивная репродукция - это временная и территориальная разобщенность синтеза вирусных компонентов - генетического материала и белков - от последующей сборки и формирования вирионов. Показано, что генетический материал вирусов представлен одним из двух типов нуклеиновой кислоты (РНК или ДНК). Сформулировано, что основным и абсолютным критерием отличия вирусов от всех других форм жизни является отсутствие у них собственных белоксинтезирующих систем.

Накопившиеся данные позволили прийти к выводу, что вирусы не являются организмами, пусть даже мельчайшими, так как любые, даже минимальные организмы типа микоплазм, риккетсий и хламидий имеют собственные белоксинтезирующие системы. Согласно определению, сформулированному академиком В.М. Ждановым, вирусы являются автономными генетическими структурами, способными функционировать только в клетках с разной степенью зависимости от клеточных систем синтеза нуклеиновых кислот и полной зависимостью от клеточных белоксинтезирующих и энергетических систем, и подвергающимися самостоятельной эволюции.

Таким образом, вирусы представляют собой многообразную и многочисленную группу неклеточных форм жизни, не являющихся микроорганизмами, и объединенных в царство Vira, Вирусы изучаются в рамках вирусологии, которая представляет собой самостоятельную научную дисциплину, имеющую свой объект и методы исследования.

Вирусологию разделяют на общую и частную, а вирусологические исследования - на фундаментальные и прикладные. Предметом фундаментальных исследований в вирусологии является архитектура вирионов, их состав, особенности взаимодействия вирусов с клеткой, способы переноса наследственной информации, молекулярные механизмы синтеза элементов и процесс их объединения в целое, молекулярные механизмы изменчивости вирусов и их эволюция. Прикладные исследования в вирусологии связаны с решением проблем медицины, ветеринарии и фитопатологии.

ГЛАВА 2

^ СТРУКТУРНАЯ И МОЛЕКУЛЯРНАЯ ОРГАНИЗАЦИЯ ВИРУСОВ

В онтогенетическом цикле вируса выделены две стадии - внеклеточная и внутриклеточная и, соответственно, две формы его существования - вирион и вегетативная форма. Вирион - это целая вирусная частица, в основном состоящая из белка и нуклеиновой кислоты, часто устойчивая к воздействию факторов внешней среды и приспособленная для переноса генетической информации из клетки в клетку. Вегетативная форма вируса существует в едином комплексе вирус-клетка и только в их тесном взаимодействии.

2.1. Архитектура вирионов

Внеклеточная форма вируса - вирион, предназначенная для сохранения и переноса нуклеиновой кислоты вируса, характеризуется собственной архитектурой, биохимическими и молекулярно-генетическими особенностями. Под архитектурой вирионов понимают ультратонкую структурную организацию этих надмолекулярных образований, различающихся размерами, формой и сложностью строения. Для описания архитектуры вирусных структур разработана номенклатура терминов:

Белковая субъединица - единая, уложенная определенным образом полипептидная цепь.

Структурная единица (структурный элемент) - белковый ансамбль более высокого порядка, образованный несколькими химически связанными идентичными или неидентичными субъединицами.

Морфологическая единица - группа выступов (кластер) на поверхности капсида, видимая в электронном микроскопе. Часто наблюдаются кластеры, состоящие из пяти (пентамер) и шести (гексамер) выступов. Это явление получило название пентамерно-гексамерной кластеризации. Если морфологическая единица соответствует химически значимому образованию (сохраняет свою организацию в условиях мягкой дезинтеграции), то применяют термин капсомер.

Капсид - внешний белковый чехол или футляр, образующий замкнутую сферу вокруг геномной нуклеиновой кислоты.

Кор (core) - внутренняя белковая оболочка, непосредственно примыкающая к нуклеиновой кислоте.

Нуклеокапсид - комплекс белка с нуклеиновой кислотой, представляющий собой упакованную форму генома.

Суперкапсид или пеплос - оболочка вириона, образованная липидной мембраной клеточного происхождения и вирусными белками.

Матрикс - белковый компонент, локализованный между суперкапсидом и капсидом.

Пепломеры и шипы - поверхностные выступы суперкапсида.

Как уже отмечалось, вирусы могут проходить через самые микроскопические поры, задерживающие бактерии, за что и были названы фильтрующимися агентами. Свойство фильтруемости вирусов обусловлено размерами, исчисляемыми нанометрами (нм), что на несколько порядков меньше, чем размеры самых мелких микроорганизмов. Размеры вирусных частиц, в свою очередь, колеблются в относительно широких пределах. Самые мелкие просто устроенные вирусы имеют диаметр чуть больше 20 нм (парвовирусы, пикорнавирусы, фаг Qβ), вирусы средних размеров - 100-150 нм (аденовирусы, коронавирусы). Наиболее крупными признаны вирусные частицы осповакцины, размеры которых достигают 170x450 нм. Длина нитевидных вирусов растений может составлять 2000 нм.

Представители царства Vira характеризуются разнообразием форм. По своей структуре вирусные частицы могут быть простыми образованиями, а могут представлять собой достаточно сложные ансамбли, включающие несколько структурных элементов. Условная модель гипотетического вириона, включающего все возможные структурные образования, представлена на рисунке 1.

Существует два типа вирусных частиц (ВЧ), принципиально отличающихся друг от друга:

1) ВЧ, лишенные оболочки (безоболочечные или непокрытые вирионы);

2) ВЧ, имеющие оболочку (оболочечные или покрытые вирионы).

Рис. 1. Строение гипотетического вириона

2.1.1. Строение вирионов, лишенных оболочки

Выделено три морфологических типа вирионов, лишенных оболочки: палочковидные (нитевидные), изометрические и булавовидные (рис. 2). Существование первых двух типов непокрытых вирионов определяется способом укладки нуклеиновой кислоты и ее взаимодействием с белками.

1. Белковые субъединицы связываются с нуклеиновой кислотой, располагаясь вдоль нее периодическим образом так, что она сворачивается в спираль и образует структуру под названием нуклеокапсид. Такой способ регулярного, периодического взаимодействия белка и нуклеиновой кислоты определяет образование палочковидных и нитевидных вирусных частиц.

2. Нуклеиновая кислота не связана с белковым чехлом (возможные нековалентные связи очень подвижны). Такой принцип взаимодействия определяет образование изометрических (сферических) вирусных частиц. Белковые оболочки вирусов, не связанные с нуклеиновой кислотой, называют капсидом.

3. Булавовидные вирионы обладают дифференцированной структурной организацией и состоят из ряда дискретных структур. Основными структурными элементами вириона являются изометрическая головка и хвостовой отросток. В зависимости от вируса в структуре вириона также могут присутствовать муфта, шейка, воротничок, хвостовой стержень, хвостовой чехол, базальная пластинка и фибриллы. Наиболее сложную дифференцированную структурную организацию имеют бактериофаги T-четной серии, вирион которых состоит из всех перечисленных структурных элементов.

Вирионам или их компонентам могут быть присущи два основных типа симметрии (свойство тел повторять свои части) - спиральный и икосаэдрический. В том случае, если компоненты вириона обладают разной симметрией, то говорят о комбинированном типе симметрии ВЧ. (схема 1).

Спиральная укладка макромолекул описывается следующими параметрами: числом субъединиц на виток спирали (u, число необязательно целое); расстоянием между субъединицами вдоль оси спирали (p); шагом спирали (P); P=pu. Классическим примером вируса со спиральным типом симметрии является вирус табачной мозаики (ВТМ). Нуклеокапсид этого палочковидного вируса размером 18x300 нм состоит из 2130 идентичных субъединиц, на виток спирали приходится 16 1/3 субъединиц, шаг спирали составляет 2,3 нм.

Икосаэдрическая симметрия - самая эффективная для конструирования замкнутог

ВИРУСОЛОГИЯ

Вирусология - раздел биологии, изучающий вирусы (от латинского слова virus - яд).

Впервые существование вируса (как нового типа возбудителя болезней) доказал в 1892 году русский учёный Д. И. Ивановский. После многолетних исследований заболеваний табачных растений, в работе, датированной 1892 годом, Д. И. Ивановский приходит к выводу, что мозаичная болезнь табака вызывается «бактериями, проходящими через фильтр Шамберлана, которые, однако, не способны расти на искусственных субстратах». На основании этих данных были определены критерии, по которым возбудителей заболеваний относили к этой новой группе: фильтруемость через «бактериальные» фильтры, неспособность расти на искусственных средах, воспроизведения картины заболевания фильтратом, освобождённым от бактерий и грибов. Возбудитель мозаичной болезни называется Д. И. Ивановским по-разному, термин вирус ещё не был введён, иносказательно их называли то «фильтрующимися бактериями», то просто «микроорганизмами».

Пять лет спустя, при изучении заболеваний крупного рогатого скота, а именно - ящура, был выделен аналогичный фильтрующийся микроорганизм. А в 1898 году, при воспроизведении опытов Д. Ивановского голландским ботаником М. Бейеринком, он назвал такие микроорганизмы «фильтрующимися вирусами». В сокращённом виде, это название и стало обозначать данную группу микроорганизмов.

В 1901 г. было обнаружено первое вирусное заболевание человека - жёлтая лихорадка. Это открытие было сделано американским военным хирургом У. Ридом и его коллегами.

В 1911 г. Фрэнсис Раус доказал вирусную природу рака - саркомы Рауса (лишь в 1966 г, спустя 55 лет, ему была вручена за это открытие Нобелевская премия по физиологии и медицине).

^ Этапы развития вирусологии

Быстрый прогресс в области вирусологических знаний, основанный в значительной мере на достижениях смежных естественных наук, обусловил возможность углубленного познания природы вирусов. Как ни в одной другой науке, в вирусологии прослеживается быстрая и четкая смена уровней познания - от уровня организма до субмолекулярного.

Приведенные периоды развития вирусологии отражают те уровни, которые являлись доминирующими в течение одного - двух десятилетий.

^ Уровень организма (30-40-е годы XX века). Основной экспериментальной моделью являются лабораторные животные (белые мыши, крысы, кролики, хомяки и т. д.), основным модельным вирусом - вирус гриппа.

В 40-е годы в вирусологию в качестве экспериментальной модели прочно входят куриные эмбрионы в связи с их высокой чувствительностью к вирусам гриппа, оспы и некоторым другим. Использование этой модели стало возможным благодаря исследованиям австралийского вирусолога и иммунолога Ф. М. Бернета, автора пособия по вирусологии «Вирус как организм».

Открытие американским вирусологом Херстом феномена гемагглютинации немало способствовало изучению взаимодействия вируса с клеткой на модели вируса гриппа и эритроцитов.

^ Уровень клетки (50-е годы). Происходит значительное событие в истории вирусологии - открытие возможности культивировать клетки в искусственных условиях. В. Дж. Эндерс, Т. Уэллер, Ф. Роббинс получили Нобелевскую премию за разработку метода культуры клеток. Использование культуры клеток в вирусологии явилось подлинно революционным событием, послужившим основой для выделения многочисленных новых вирусов, их идентификации, клонирования, изучения их взаимодействия с клеткой. Появилась возможность получения культуральных вакцин. Эта возможность была доказана на примере вакцины против полиомиелита. В содружестве с американскими вирусологами Дж. Солком и А. Сейбином, советскими вирусологами М. П. Чумаковым, А. А. Смородинцевым и др. была разработана технология производства, апробирована и внедрена в практику убитая и живая вакцины против полиомиелита. Была проведена массовая иммунизация детского населения в СССР (около 15 млн.) живой полиомиелитной вакциной, в результате резко снизилась заболеваемость полиомиелитом и практически исчезли паралитические формы заболевания. За разработку и внедрение в практику живой полиомиелитной вакцины М. П. Чумакову и А. А. Смородинцеву была присуждена Ленинская премия. Другим важным приложением техники выращивания вирусов явилось получение Дж. Эндерсом и А. А. Смородинцевым живой коревой вакцины, широкое применение которой обусловило значительное снижение заболеваемости корью и является основой для искоренения этой инфекции.

Широко внедрялись в практику и другие культуральные вакцины - энцефалитная, ящурная, антирабическая и т. д.

^ Молекулярный уровень (60-е годы). В вирусологии широко стали использовать методы молекулярной биологии, а вирусы благодаря простой организации их генома стали распространенной моделью для молекулярной биологии. Ни одно открытие молекулярной биологии не обходится без вирусной модели, включая генетический код, весь механизм внутриклеточной экспрессии генома, репликацию ДНК, процессинг (созревание) информационных РНК и т. д. В свою очередь использование молекулярных методов в вирусологии позволило установить принципы строения (архитектуры) вирусных индивидуумов - вирионов (термин, введенный французским микробиологом А. Львовом), способы проникновения вирусов в клетку и их репродукции.

^ Субмолекулярный уровень (70-е годы). Стремительное развитие молекулярной биологии открывает возможности изучения первичной структуры нуклеиновых кислот и белков. Появляются методы секвенирования ДНК, определения аминокислотных последовательностей белка. Получают первые генетические карты геномов ДНК-содержащих вирусов.

Д. Балтимором и одновременно Г. Теминым и С. Мизутани была открыта обратная транскриптаза в составе РНК-содержащих онкогенных вирусов, фермент, переписывающий РНК на ДНК. Становится реальным синтез гена с помощью этого фермента на матрице, выделенной из полисом иРНК. Появляется возможность переписать РНК в ДНК и провести ее секвенирование.

Возникает новый раздел молекулярной биологии - генная инженерия. В этом году публикуется сообщение П. Берга в США о создании рекомбинантной молекулы ДНК, которое положило начало эре генной инженерии. Появляется возможность получения большого количества нуклеиновых кислот и белков путем введения рекомбинантных ДНК в состав генома прокариот и простых эукариот. Одним из основных практических приложений нового метода является получение дешевых препаратов белков, имеющих значение в медицине (инсулин, интерферон) и сельском хозяйстве (дешевые белковые корма для скота). Этот период характеризуется важными открытиями в области медицинской вирусологии. В фокусе изучения - три наиболее массовых болезни, наносящих огромный ущерб здоровью людей,- грипп, рак, гепатит.

Установлены причины регулярно повторяющихся пандемий гриппа. Детально изучены вирусы рака животных (птиц, грызунов), установлена структура их генома и идентифицирован ген, ответственный за злокачественную трансформацию клеток - онкоген. Установлено, что причиной гепатитов А и В являются разные вирусы: гепатит А вызывает РНК-содержащий вирус, отнесенный к семейству пикорнавирусов, а гепатит В - ДНК-содержащий вирус, отнесенный к семейству гепаднавирусов. Г. Бламберг, исследуя антигены крови у аборигенов Австралии, обнаружил так называемый австралийский антиген, который он принял за один из антигенов крови. Позже было выявлено, что этот антиген является антигеном гепатита В, носительство которого распространено во всех странах мира. За открытие австралийского антигена Г. Бламбергу была присуждена Нобелевская премия. Другая Нобелевская премия присуждена американскому ученому К. Гаидушеку, который установил вирусную этиологию, одной из медленных инфекций человека - куру, наблюдающейся в одном из туземных племен на острове Новая Гвинея и связанной с ритуальным обрядом - поеданием зараженного мозга умерших родственников. Благодаря усилиям К. Гайдушека, поселившегося на острове Новая Гвинея, эта традиция была искоренена и число больных резко сократилось.

^ Природа вирусов

Общая вирусология

Общая вирусология изучает основные принципы строения, размножения вирусов, их взаимодействие с клеткой-хозяином, происхождение и распространение вирусов в природе. Один из важнейших разделов общей вирусологии - молекулярная вирусология, изучающая структуру и функции вирусных нуклеиновых кислот, механизмы экспрессии вирусных генов, природу устойчивости организмов к вирусным заболеваниям, молекулярную эволюцию вирусов.

Частная вирусология

Частная вирусология исследует особенности определенных групп вирусов человека, животных и растений и разрабатывает меры борьбы с вызываемыми этими вирусами болезнями.

Молекулярная вирусология

В 1962 г. вирусологи многих стран собрались на симпозиуме в США, чтобы подвести первые итоги развития молекулярной вирусологии. На этом симпозиуме звучали не совсем привычные для вирусологов термины: архитектура вирионов, нуклеокапсиды, капсомеры. Начался новый период в развитии вирусологии - период молекулярной вирусологии. Молекулярная вирусология, или молекулярная биология вирусов, - составная часть общей молекулярной биологии и в то же время - раздел вирусологии. Это и неудивительно. Вирусы - наиболее простые формы жизни, и поэтому вполне естественно, что они стали и объектами изучения, и орудиями молекулярной биологии. На их примере можно изучать фундаментальные основы жизни и ее проявления.

С конца 50-х годов, когда начала формироваться синтетическая область знаний, лежащая на границе неживого и живого и занимающаяся изучением живого, методы молекулярной биологии хлынули обильным потоком в вирусологию. Эти методы, основанные на биофизике и биохимии живого, позволили в короткие сроки изучить строение, химический состав и репродукцию вирусов.

Поскольку вирусы относятся к сверхмалым объектам, для их изучения нужны сверхчувствительные методы. С помощью электронного микроскопа удалось увидеть отдельные вирусные частицы, но определить их химический состав можно только, собрав воедино триллионы таких частиц. Для этого были разработаны методы ультрацентрифугирования. Современные ультрацентрифуги - это сложноустроенные приборы, главной частью которых являются роторы, вращающиеся со скоростью в десятки тысяч оборотов в секунду.

Здесь нет надобности рассказывать о других методах молекулярной вирусологии, тем более что они меняются и совершенствуются из года в год быстрыми темпами. Если в 60-х годах основное внимание вирусологов было фиксировано на характеристике вирусных нуклеиновых кислот и белков, то к началу 80-х годов была расшифрована полная структура многих вирусных генов и геномов и установлена не только аминокислотная последовательность, но и третичная пространственная структура таких сложных белков, как гликопротеид гемагглютинина вируса гриппа. В настоящее время можно не только связать изменения антигенных детерминант вируса гриппа с заменой в них аминокислот, но и рассчитывать прошедшие, настоящие и будущие изменения этих антигенов.

С 1974 г. начала бурно развиваться новая отрасль биотехнологии и новый раздел молекулярной биологии - генная, или генетическая, инженерия. Она немедленно была поставлена на службу вирусологии.

^ Семейства, включающие вирусы человека и животных

Семейство: Poxviridae (поксвирусы)

Семейство: Iridoviridae (иридовирусы)

Семейство: Herpesviridae (вирусы герпеса)

Семейство: Aflenoviridae (аденовирусы)

Семейство: Papovaviridae (паповавирусы)

Предполагаемое семейство: Hepadnaviridae (вирусы, подобные вирусу гепатита В)

Семейство: Parvoviridae (парвовирусы)

Семейство: Reoviridae (реовирусы)

Предполагаемое семейство: (вирусы с двухцепочечной РНК, состоящей из двух сегментов)

Семейство: Togaviridae (тогавирусы)

Семейство: Coronaviridae (коронавирусы)

Семейство: Paramyxoviridae (парамиксовирусы)

Семейство: Rhabdoviridae (рабдовирусы)

Предполагаемое семейства: (Filoviridae) (вирусы Mapбург н Эбола)

Семейство: Orthomyxoviridae (вирусы гриппа)

Семейство: Bunyaviridae (буиьявирусы)

Семейство: Arenaviridae (аренавирусы)

Семейство: Retroviridae (ретровирусы)

Семейство: Picornaviridae (пикорнавирусы)

Семейство: Caliciviridae (калнцивирусы)
^

http://9school.3dn.ru/news/obrashhenie_direktora_shkoly/2009-11-27-159

http://www.bajena.com/ru/articles/1085/flu-2/

Грипп

Грипп (итал. influenza, лат. influentia, дословно – влияние, греч. Γρίππη) – острое инфекционное заболевание дыхательных путей, вызываемое вирусом гриппа. Входит в группу острых респираторных вирусных инфекций (ОРВИ). Периодически распространяется в виде эпидемий и пандемий. В настоящее время выявлено более 2000 вариантов вируса гриппа, различающиеся между собой антигенным спектром.

Нередко словом «грипп» в обиходе также называют любое острое респираторное заболевание (ОРВИ), что ошибочно, так как кроме гриппа на сегодняшний день описано еще более 200 видов других респираторных вирусов (аденовирусы, риновирусы, респираторные принципиальные вирусы и др.), вызывающих гриппоподобные заболевания у человека. Предположительно, название болезни происходит от русского слова «хрип» – звуки, издаваемые больными. Во время Семилетней войны (1756–1763) это название распространилось в европейские языки, обозначая уже саму болезнь, а не отдельный симптом.

Микрофотография вируса гриппа, снятая при помощи электронного просвечивающего микроскопа, увеличенная примерно в сто тысяч раз.
^

Вирус гриппа


Вирус гриппа относится к семейству ортомиксовирусов (лат. Orthomyxoviridae) и включает три серовара А, В, С. Вирусы сероваров А и В составляют один род, а серотип С образует другой. Каждый серовар имеет свою антигенную характеристику, которая определяется нуклео-протеинами (NP) и матричными (M) белковыми антигенами. Серовар А включает подтипы, которые различаются по характеристике своего гемагглютинина (H) и нейраминидазы (N). Для вирусов серовара А (реже В) характерно частое изменение антигенной структуры при пребывании их в естественных условиях. Эти изменения обуславливают множество названий подтипов, которые включают место первичного появления, номер и год выделения, характеристика HN - например A/Moscow/10/99 (H3N2), A/New Caledonia/120/99 (H1N1), B/Hong Kong/330/2001.

Вирус гриппа имеет сферическую форму диаметром 80-120 нм, в центре находятся РНК-фрагменты, заключённые в липопротеидную оболочку, на поверхности которой имеются «шипы» состоящие из гемагглютинина (H) и из нейраминидазы (N). Антитела, вырабатываемые в ответ на гемагглютинин (H), составляют основу иммунитета против определённого подтипа возбудителя гриппа.

Распространение

К гриппу восприимчивы все возрастные категории людей. Источником инфекции является больной человек с явной или стёртой формой болезни, выделяющий вирус с кашлем, чиханьем и т.д. Больной заразен с первых часов заболевания и до 3-5-х суток болезни. Характеризуется аэрозольным (вдыхание мельчайших капель слюны, слизи, которые содержат вирус гриппа) механизмом передачи и чрезвычайно быстрым распространением в виде эпидемий и пандемий. Эпидемии гриппа, вызванные серотипом А, возникают примерно каждые 2-3 года, а вызванные серотипом В - каждые 4-6 лет. Серотип С не вызывает эпидемий, только единичные вспышки у детей и ослабленных людей. В виде эпидемий встречается чаще в осенне-зимний период. Периодичность эпидемий связана с частым изменением антигенной структуры вируса при пребывании его в естественных условиях. Группами высокого риска считаются дети, люди преклонного возраста, беременные женщины, люди с хроническими болезнями сердца, лёгких, а также индивидуумы, имеющие хроническую почечную недостаточность.

История эпидемий, серотип A

Грипп известен с конца XVI века.

Год Подтип Распространение

1889-1890 H2N8 Тяжёлая эпидемия

1900-1903 H3N8 Умеренная эпидемия

1918-1919 H1N1 Тяжёлая пандемия (Испанский грипп)

1933-1935 H1N1 Средняя эпидемия

1946-1947 H1N1 Средняя эпидемия

1957-1958 H2N2 Тяжёлая пандемия (Азиатский грипп)

1968-1969 H3N2 Умеренная пандемия (Гонконгский грипп)

1977-1978 H1N1 Средняя пандемия

1995-1996 H1N1 и H3N2 Тяжёлая пандемия

2009 H1N1 Умеренная пандемия (Свиной грипп)

Развитие болезни - патогенез

Входными воротами для вируса гриппа являются клетки мерцательного эпителия верхних дыхательных путей - носа, трахеи, бронхов. В этих клетках вирус размножается и приводит к их разрушению и гибели. Этим объясняется раздражение верхних дыхательных путей кашель, чихание, заложенность носа. Проникая в кровь и вызывая виремию, вирус оказывает непосредственное, токсическое действие, проявляющееся в виде повышения температуры, озноба, миалгий, головной боли. Кроме того, вирус повышает сосудистую проницаемость, вызывает развитие стазов,и плазмо-геморрагий. Может вызывать и угнетение защитных систем организма, что обуславливает присоединение вторичной инфекции и осложнения.

Патологическая анатомия

На протяжении всего трахео-бронхиального дерева наблюдается отслоение эпителия, образование аркадообразных структур эпителия трахеи и бронхов вследствие неравномерного отёка и вакуолизации цитоплазмы и признаки экссудативного воспаления. Частый характерный признак - геморрагический трахеобронхит различной степени выраженности. В очагах гриппозной пневмонии альвеолы содержат серозный экссудат, эритроциты, лейкоциты, альвеолоциты. В очагах воспаления нередки тромбозы сосудов и некрозы.

Клиническая картина

Симптомы гриппа не являются специфическими, то есть без особых лабораторных исследований (выделение вируса из мазков горла, прямая и непрямая иммунофлуоресценция на мазках эпителия слизистой оболочки носа, серологический тест на наличие анти-гриппозных антител в крови) невозможно наверняка отличить грипп от других ОРВИ. На практике диагноз «грипп» устанавливается на основании лишь эпидемических данных, когда наблюдается повышение заболеваемости ОРВИ среди населения данной местности. Различие диагнозов «грипп» и «ОРВИ» не является принципиальным, так как лечение и последствия обоих заболеваний идентичны, различия заключаются лишь в названии вируса, вызвавшего болезнь. Сам грипп входит в число Острых Респираторных Вирусных Инфекций.

Инкубационный период может колебаться от нескольких часов до 3-х дней, обычно 1-2 дня. Тяжесть заболевания варьирует от лёгких до тяжёлых гипертоксических форм. Некоторые авторы указывают, что Типичная гриппозная инфекция начинается обычно с резкого подъёма температуры тела (до 38 °C - 40 °C), которая сопровождается ознобом, лихорадкой, болями в мышцах, головной болью и чувством усталости. Выделений из носа, как правило, нет, напротив есть выраженное чувство сухости в носу и глотке. Обычно появляется сухой, напряжённый кашель, сопровождающийся болью за грудиной. При гладком течении эти симптомы сохраняются 3-5 дней, и больной выздоравливает, но несколько дней сохраняется чувство выраженной усталости, особенно у пожилых больных. При тяжёлых формах гриппа развивается сосудистый коллапс, отёк мозга, геморрагический синдром, присоединяются вторичные бактериальные осложнения. Клинические находки при объективном исследовании не выражены - только гиперемия и отёк слизистой зева, бледность кожи, инъецированные склеры. Следует сказать, что грипп представляет большую опасность из-за развития серьёзных осложнений, особенно у детей, пожилых и ослабленных больных.

Осложнения гриппа

Частота возникновения осложнений заболевания относительно не велика, но в случае их развития они могут представлять значительную опасность для здоровья больного. Средне-тяжёлые, тяжёлые и гипертоксические формы гриппа, могут являться причиной серьёзных осложнений. Причинами возникновения осложнений при гриппе могут быть следующие особенности инфекционного процесса: вирус гриппа оказывает выраженное капилляро-токсическое действие, способен подавлять иммунитет, разрушает тканевые барьеры, облегчая тем самым агрессию тканей резидентной флорой.

^ Различают несколько основных видов осложнений при гриппе:

Лёгочные: бактериальная пневмония, геморрагическая пневмония, формирование абсцесса лёгкого, образование эмпиемы.

Внелёгочные: бактериальные риниты, синуситы, отиты, трахеиты, вирусный энцефалит, менингит, неврит, радикулоневрит, поражение печени синдром Рея, миокардит, токсико-аллергический шок.

Чаще всего летальные исходы при гриппе наблюдаются среди детей младше 2-х лет и пожилых людей старше 65 лет.

Лечение

До последнего времени лечение было обычно симптоматическое, в виде жаропонижающих, отхаркивающих, и противо-кашляющих средств, а также витамины, особенно витамин С в больших дозах. Центр CDC рекомендует пациентам покой, достаточное количество жидкости, избегать курения и спиртных напитков.

^ Иммуно-стимулирующие препараты

Предупреждение и раннее лечение простудных заболеваний высокими дозами витамина С (аскорбиновой кислоты) пропагандировалось Лайнусом Полингом, двукратным лауреатом Нобелевской премии. Благодаря его авторитету этот способ получил широкое распространение. Обычно рекомендуется принимать не больше 1г аскорбиновой кислоты в день.

Существует так же ряд более современных иммуностимуляторов, которые могут применяться для профилактики и лечения на ранних стадиях гриппа. Среди них можно выделить арбидол (относительно слабый иммуномодулятор) и гроприносин (более сильный иммуномодулятор, прием которого требует контроля врача).

^ Противовирусные препараты

Предполагается, что противовирусные препараты, действующие на ту или иную фазу развития вирусной инфекции in vitro, способны показать эффективность и in vivo, особенно - как профилактическое средство. В целом, начало лечения противовирусными препаратами должно быть начато ещё до проявления клинических проявлений гриппа, более позднее начало их приёма практически неэффективно.

^ Ингибиторы нейраминидазы

Одним из препаратов, имеющих доказанную эффективность при лечении гриппа, является озельтамивир (тамифлю ) и занамивир (Relenza ). Эти ингибиторы нейраминидазы эффективны против многих штаммов гриппа, включая птичий. Эти препараты подавляют распространение вируса в организме, снижают тяжесть симптомов, сокращают продолжительность заболевания и уменьшают частоту вторичных осложнений. Однако имеются данные о том, что названные лекарственные средства вызывают ряд побочных действий, таких как тошнота, рвота, диарея, а также психические расстройства: нарушение сознания, галлюцинации, психозы.

Иммуноглобулины

Специальные строго контролируемые исследования показали, что отчетливое противовирусное и терапевтическое действие при гриппе оказывают лишь донорская сыворотка и противогриппозный гамма-глобулин, содержащие высокие титры антител. Гамма-глобулин необходимо назначать по возможности в более ранние сроки внутримышечно: детям по 0,15-0,2 мл/кг, взрослым по 6 мл. В тех же дозах можно использовать нормальный (плацентарный) гамма-глобулин и сывороточный полиглобулин.

^ Препараты интерферона

Это вещество обладает противовирусным и иммуно-стимулирующим действием. Наиболее эффективны интерфероны в начальной фазе (первые три дня) заболевания.

^ Симптоматическое лечение

Для облегчения носового дыхания действенны нафтизин, санорин, галазолин. Однако применять их надо не регулярно, а по мере необходимости (когда нос заложен), иначе возникают кровотечения.

^ Профилактика гриппа

Традиционным способом предупреждения заболевания гриппом является вакцинация. Она осуществляется соответствующей ведущему штамму противогриппозной вакциной и содержит, как правило, антигены трех штаммов вируса гриппа, которые отбираются на основе рекомендаций Всемирной организации здравоохранения. Предложена вакцина для профилактики гриппа в форме жидкой, убитой, субъективной вакцины. Вакцинация особенно показана в группах риска - дети, пожилые люди, больные с хроническими заболеваниями сердца и лёгких, а также врачи. Обычно осуществляется, когда эпидемиологический прогноз свидетельствует о целесообразности массовых мероприятий (обычно в середине осени).Возможна и вторая прививка в середине зимы.

Эффективность вакцинации зависит от того, насколько создателям удается предсказать циркулирующие в данном эпидемиологическом сезоне штаммы. Помимо вакцинации для экстренной профилактики гриппа и Острой Респираторной Вирусной Инфекции применяется интразональное введение интерферона.Данный метод используется при опасении заболеть после контакта с больными респираторной инфекцией, в период эпидемического подъема заболеваемости. При этом интерферон блокирует репликацию вирусов в месте их внедрения в полости носа.

В качестве не специфической профилактики в помещении, где находится больной гриппом, проводится влажная уборка с применением любого дезинфицирующего средства, обладающего вирулицидным действием. Для дезинфекции воздуха используется ультрафиолетовое облучение, аэрозольные дезинфекторы и каталитические очистители воздуха. Чихающие и кашляющие больные опасны для окружающих. Профилактика гриппа обязательно должна включать удаление их из общественных мест (путём призывов быть сознательными). Нередки случаи обращения в суд на больных, пришедших на работу будучи ещё на больничном.

Прогноз

При неосложнённом гриппе прогноз благоприятный. При тяжёлой форме гриппа и осложнениях возможны случаи летального исхода.

^ СВИНОЙ ГРИПП

Свиной грипп (англ. Swine flu) - условное название заболевания людей и животных, вызываемого штаммами вируса гриппа. Название широко распространялось в СМИ в начале 2009 года. Штаммы, ассоциированные со вспышками т. н. «свиного гриппа», обнаружены среди вирусов гриппа серотипа C и подтипов серотипа А (А/H1N1, А/H1N2, А/H3N1, А/H3N2 и А/H2N3). Эти штаммы известны под общим названием «вирус свиного гриппа». Свиной грипп распространён среди домашних свиней в США, Мексике, Канаде, Южной Америке, Европе, Кении, материковом Китае, Тайване, Японии и других странах Азии. При этом вирус может циркулировать в среде людей, птиц и др. видов; этот процесс сопровождается его мутациями.

^ Вирус A/H1N1 под электронным микроскопом. Диаметр вируса - 80-120 nm.

Эпидемиология

Передача вируса от животного к человеку мало распространена, и правильно приготовленная (термически обработанная) свинина не может быть источником заражения. Передаваясь от животного к человеку, вирус не всегда вызывает заболевание и часто выявляется только по наличию антител в крови человека. Случаи, когда передача вируса от животного к человеку приводит к заболеванию, называют зоонозным свиным гриппом. Люди, работающие со свиньями, подвергаются риску заражения этим заболеванием, тем не менее с середины двадцатых годов XX века (когда впервые стала возможной идентификация подтипов вируса гриппа) было зарегистрировано всего лишь около 50 таких случаев. Некоторые из штаммов, вызвавших заболевание у людей, приобрели способность передаваться от человека к человеку. Свиной грипп вызывает у человека симптомы, типичные для гриппа и ОРВИ. Вирус свиного гриппа передается как через непосредственный контакт с заражёнными организмами, так и воздушно-капельным путем (см. Механизм передачи возбудителя инфекции).

Этиология

Симптомы свиного гриппа. Вспышка нового штамма вируса гриппа в 2009 году, получившая известность как «свиной грипп», была вызвана вирусом подтипа H1N1, обладающим наибольшим генетическим сходством с вирусом свиного гриппа. Происхождение этого штамма точно не известно. Тем не менее Всемирная организация по охране здоровья животных (World Organization for Animal Health) сообщает, что эпидемическое распространение вируса этого же штамма не удалось установить среди свиней. Вирусы этого штамма передаются от человека к человеку и вызывают заболевания с симптомами, обычными для гриппа. Свиньи могут быть инфицированы вирусом гриппа человека, и именно это могло произойти как во время пандемии Испанского гриппа, так и вспышки 2009 года.

Патогенез

В целом механизм воздействия данного вируса аналогичен таковому при поражении другими штаммами вируса гриппа. Входными воротами инфекции является эпителий слизистых оболочек дыхательных путей человека, где происходит его репликация и репродукция. Наблюдается поверхностное поражение клеток трахеи и бронхов, характеризующееся процессами дегенерации, некроза и отторжения пораженных клеток.

Развитие патологического процесса сопровождается вирусемией, длящейся 10 −14 дней, с преобладанием токсических и токсико-аллергических реакций со стороны внутренних органов, в первую очередь сердечно-сосудистой и нервной систем. Главным звеном в патогенезе является поражение сосудистой системы, проявляющееся повышением проницаемости и ломкости сосудистой стенки, нарушением микроциркуляции. Данные изменения проявляются у больных появлением ринорагий (носовых кровотечений), геморрагий на коже и слизистых, кровоизлияниями во внутренние органы, а также приводят к развитию патологических изменений в лёгких: отёку легочной ткани с множественными кровоизлияниями в альвеолы и интерстиций. Падение тонуса сосудов приводит к возникновению венозной гиперемии кожи и слизистых оболочек, застойному полнокровию внутренних органов, нарушению микроциркуляции, диапедезным кровоизлияниям, на более поздних сроках - тромбозам вен и капилляров. Данные сосудистые изменения также вызывают гиперсекрецию ликвора с развитием циркуляторных расстройств, приводящих к внутричерепной гипертензии и отёку мозга.

Клиника

Основные симптомы совпадают с обычными симптомами гриппа - головная боль, повышение температуры, кашель, рвота, диарея, насморк. Существенную роль в патогенезе играет поражение легких и бронхов вследствие усиления экспрессии ряда факторов - медиаторов воспаления (TLR-3, γ-IFN, TNFα и др.), что приводит к множественному повреждению альвеол, некрозу и геморрагии Высокая вирулентность и патогенность этого штамма вируса может быть обусловлена способностью неструктурного белка NS1 (присущего этому вирусу) ингибировать продукцию интерферонов I типа инфицированными клетками. Дефектные по этому гену вирусы оказываются существенно менее патогенными.

Диагностика

Клинически течение данного заболевания в целом совпадает с течением заболевания при инфицировании другими штаммами вируса гриппа. Достоверный диагноз устанавливается при сертотипировании вируса

Профилактика

В целях первичной специфической профилактики (прежде всего лиц категории риска) в РФ и за рубежом проводится ускоренная разработка и регистрация специфических вакцин на основе выделенного штамма возбудителя. Эпидемиологи приветствуют также вакцинацию от «сезонного» гриппа, содержащую антитела против повреждающих агентов (белков) трёх, отличающихся от «свиного» штамма видов вируса.

В памятке ВОЗ о высокопатогенном гриппе указывается на необходимость исключить близкий контакт с людьми, которые «кажутся нездоровыми, имеющие высокую температуру тела и кашель». Рекомендуется тщательно и достаточно часто мыть руки с мылом. «Придерживайтесь здорового образа жизни, включая полноценный сон, употребление здоровой пищи, физическую активность». При должной термообработке вирус погибает. Первичная не специфическая профилактика направлена на предотвращение попадание вируса в организм, и на усилении не специфического иммунного ответа для предотвращения развития заболевания.

Лечение

Лечение заболевания, вызванного штаммами вируса «свиного» гриппа по сути не отличается от лечения так называемого «сезонного» гриппа. При выраженных явлениях интоксикации и нарушениях кислотно-щелочного баланса проводится дезинтоксикационная и корректирующая терапия. Из препаратов, действующих на сам вирус и на его размножение доказана эффективность Озельтамивира (Тами-Флю). При его отсутствии экспертами ВОЗ рекомендуется препарат Занамивир (Реленза), при относительно лёгком течении заболевания врачи стран постсоветского пространства рекомендуют арбидол, несмотря на то, что он относится к лекарственным средствам с недоказанной эффективностью, а ВОЗ вовсе не рассматривает его в качестве противовирусного препарата. Лечение тяжелых и средней степени тяжести случаев направлено на недопущение первичной вирусной пневмонии, обычно протекающей тяжело и вызывающей геморрагии и выраженную дыхательную недостаточность, и на профилактику присоединения вторичной бактериальной инфекции, также часто обуславливающей развитие пневмонии.

Показана также симптоматическая терапия. Из жаропонижающих препаратов большинством специалистов рекомендуются препараты содержащие ибупрофен и парацетамол (не рекомендуется использовать средства, содержащие аспирин, в связи с риском развития синдрома Рея.

Срочное обращение в медицинские учреждения (вызов скорой помощи) необходимо при признаках выраженной дыхательной недостаточности, угнетения мозговой деятельности и нарушений функции сердечно-сосудистой системы: одышки, нехватке дыхания, цианозе (посинения кожи), обмороке, появлении окрашенной мокроты, низком кровяном давлении, появлении болей в груди.

Обязательное обращение к врачу (как правило в поликлинику по месту жительства) необходимо при высокой температуре, не снижающейся на 4-й день, выраженного ухудшения состояния после временного улучшения.

^

В настоящее время исследуется ряд новых противовирусных препаратов, в т.ч. Перамивир.

Рекомендации по профилактике и лечению гриппа Министерства здравоохранения и социального развития РФ.

^

Министерство здравоохранения и социального развития РФ выпустило «Временные методические рекомендации по лечению и профилактике гриппа A/H1N1».

Временные методические рекомендации по схемам лечения и профилактики гриппа, вызванного вирусом типа А/H1N1, для взрослого и детского населения были подготовлены совместно с ведущими научно-исследовательскими институтами РАМН, это НИИ гриппа, НИИ эпидемиологии и микробиологии им. Н.Ф.Гамалеи и ФГУ «Научно-исследовательский институт детских инфекций» и НИИ пульмонологии ФМБА России.

^

Эпидемии, вызванные вирусом гриппа H1N1

Пандемия в 1918 г. - «Испанка»

Основная статья: Испанский грипп

Испанский грипп или «испанка» (фр. La Grippe Espagnole, или исп. La Pesadilla) был, вероятней всего, самой страшной пандемией гриппа за всю историю человечества. В 1918-1919 годах во всем мире от испанки умерло приблизительно 50-100 млн человек. Было заражено около 400 млн человек, или 21,5 % населения планеты. Эпидемия началась в последние месяцы Первой мировой войны и быстро затмила это крупнейшее кровопролитие по масштабу жертв.

^

Вспышка гриппа в 1976 году

Вспышка гриппа в 1988 году

Вспышка гриппа в 2007 году

20 августа 2007 года Департамент Сельского хозяйства Филиппин зарегистрировала вспышку гриппа H1N1 на свинофермах провинции Nueva Ecija и центрального Лусона.

^

Пандемия гриппа A/H1N1 2009. Вспышка вируса гриппа H1N1 в 2009 году.

В апреле-мае 2009 года вспышка нового штамма вируса гриппа наблюдалась в Мексике и США. Всемирная организация здравоохранения (ВОЗ) и Центры по контролю и профилактике заболеваний США (CDC) выразили серьёзную обеспокоенность этим новым штаммом по причине того, что существует возможность его передачи от человека к человеку, имеется высокая смертность в Мексике, а также потому, что этот штамм может перерасти в пандемию гриппа. 29 апреля на экстренном заседании ВОЗ повысила уровень пандемической угрозы с 4 до 5 баллов (из 6 возможных).

По состоянию на 27 августа 2009 года зарегистрировано около 255716 случаев инфицирования гриппом A/H1N1 и 2627 смертей в более чем 140 регионах мира. В целом заболевание этим гриппом протекает по классическому сценарию, частота осложнений и смертей (чаще вследствие пневмонии) не превышает средние показатели при сезонном гриппе.

На данный момент идут споры вокруг того, как же все-таки называть данный штамм гриппа. Так, 27 апреля 2009 г. «свиной грипп» назвали «Калифорния 04/2009» , 30 апреля производители свинины выступили за переименование «свиной грипп» в «мексиканский» ; четкого ненаучного наименования не придумано до сих пор.

Пятый уровень угрозы был объявлен в конце апреля 2009 года: в соответствии с принятой ВОЗ классификацией, этот уровень характеризуется распространением вируса от человека к человеку по меньшей мере в двух странах одного региона.

11 июня 2009 года ВОЗ объявила о пандемии свиного гриппа, первой пандемии за последние 40 лет. В этот же день ему была присвоена шестая степень угрозы (из шести). Степень угрозы во ВОЗ не характеризует патогенность вируса (то есть опасность заболевания для жизни людей), а указывает на его способность к распространению. Т.о., любой грипп, передающийся от человека к человеку, достигает шестой степени угрозы.

Тем не менее, опасения ВОЗ связаны с генетической новизной штамма Калифорния и его потенциальной способностью к дальнейшей реассортации, вследствие чего возможно возникновение более агрессивных вариантов инфекции. Тогда, по аналогии с наиболее разрушительными пандемиями прошлого века, этот вирус приведет к серьезным людским потерям спустя некоторый (обычно полугодовой) период, сопровождающийся относительно умеренной летальностью.

^

Испа́нский грипп или «испанка»

(фр. La Grippe Espagnole, или исп. La Pesadilla) был, вероятней всего, самой страшной пандемией гриппа за всю историю человечества. В 1918-1919 годах (18 месяцев) во всем мире от испанки умерло приблизительно 50-100 млн человек или 2,7-5,3 % населения Земли. Было заражено около 500 млн человек, или 21,5 % населения планеты. Эпидемия началась в последние месяцы Первой мировой войны и быстро затмила это крупнейшее кровопролитие по масштабу жертв.

^

Картина болезни, название «испанка»

Вирус гриппа «испанка» схож с вирусом H1N1, вызвавшим пандемию в 2009 году. В мае 1918 года в Испании было заражено 8 млн людей или 39 % её населения («испанкой» переболел и король Альфонс XIII). Многие жертвы гриппа были молодыми и здоровыми людьми возрастной группы 20-40 лет (обычно высокому риску подвержены только дети, люди преклонного возраста, беременные женщины и люди с некоторыми заболеваниями).

Симптомы болезни: синий цвет лица - цианоз, пневмония, кровавый кашель. На более поздних стадиях болезни вирус вызывал внутрилегочное кровотечение, в результате которого больной захлебывался собственной кровью. Но в основном болезнь проходила без каких-либо симптомов. Некоторые зараженные умирали на следующий день после заражения.

Своё название грипп приобрел из-за того, что Испания первой испытала сильную вспышку этой болезни. По другим источникам, место появления её точно установить пока невозможно, но, скорее всего, Испания не была первичным эпидемическим очагом. Название «испанка» появилось случайно. Так как военная цензура борющихся сторон во время первой мировой войны не допускала сообщений о начавшейся в армии и среди населения эпидемии, то первые известия о ней появились в печати в мае-июне 1918 г. в нейтральной Испании. Испанкой её начали называть участники мировой войны. Название болезни закрепилось в основном из-за газетной шумихи в Испании, так как Испания не участвовала в военных действиях, и на неё не распространялась военная цензура.

^

Грипп и его призраки


Рисунок скопирован: http://holimed.lviv.ua/rus/rozsylka/kakbolet/010.html

Вирус гриппа, зверствующий в этом году - A/California/09/2009 (H1N1), где А – тип вируса (тот самый, что в отличие от типов В и С, очень легко мутирует, поражает людей и животных), California – место происхождения, 09 – номер штамма, 2009 – год появления, H1N1 – серотип (то есть определенный подвид вируса гриппа А, который отличается от других набором антигенов, которые и определяют его токсичность, способность преодолевать защитные системы организма, «заразность» и проч.). Это именно тот вирус гриппа, который вызывает сейчас массовую заболеваемость.

Не во всякой простуде стоит искать грипп. Недомогание и насморк могут быть вызваны любым вирусом из тех, что «ответственны» за появление ОРВИ (острых респираторных вирусных инфекций).

^

Симптомы же гриппа (любого!) заключаются в следующем:

  1. очень резкое начало болезни,

  • резкое повышение температуры тела - до 39°С и выше,

  • сильные головные, суставные и мышечные боли,

  • ^

    заложенность носа, боли в горле, сухой кашель.

    Обычно через 3-4 дня температура снижается и, если болезнь протекает без осложнений (которыми, собственно, и опасен грипп), через 7-10 дней происходит выздоровление.

    ^

    Осложнения гриппа:

    1. поражения респираторного тракта (бронхиты и пневмонии);

  • заболевания ЛОР-органов (синуситы, отиты, ангины);

  • поражения сердечно-сосудистой системы (миокардит, миокардиодистрофия);

  • ^

    поражения центральной нервной системы (менингит, энцефалит); поражения почек (пиелонефрит, гломерулонефрит).

  • У людей с хроническими заболеваниями (например, бронхиальная астма, артериальная гипертензия) очень вероятно их обострение на фоне гриппа.

    ^

    Группы риска (по тяжелому течению и последствиям!):

    беременные, дети младшего возраста, пожилые люди, взрослые и дети с серьезными хроническими заболеваниями, а также при наличии иммунодефицита (имеются в виду патологические состояния).

    ^

    Профилактика гриппа.

    Общими правилами, важными абсолютно для всех, являются следующие:

    Часто мыть руки с мылом в течение 20 секунд.

    Кашлять и чихать в салфетку или руку.

    ^

    Не подходить к больным ближе, чем на полтора – два метра.

    Заболевшие дети должны оставаться дома (не посещать дошкольные учреждения и школы),

    ^

    а также держаться на расстоянии от других людей, пока их состояние не улучшится.

    Воздержитесь от посещения магазинов, кинотеатров или других мест скопления людей.

    Что делать, если заболел ребенок?

    ^

    Оставьте больного ребенка дома, кроме тех случаев, когда ему нужна медицинская помощь.

    Давайте ребенку много жидкости (сок, воду и др.).

    Создайте больному ребенку комфортные условия. Крайне важен покой.

    ^

    Давайте ребенку те лекарства, которые пропишет врач.

    Держите салфетки и мусорную корзину для использованных салфеток в пределах досягаемости больного.

    ^

    Не допускайте контакта больного ребенка со здоровыми членами семьи.

    Если ваш ребенок имел контакт с больным гриппом H1N1, спросите у врача о необходимости приема лекарств для предупреждения заболевания гриппом H1N1.

    ^

    Ольга Зорина

    Медицинская Редакторская Студия МедКорр.


    http://holimed.lviv.ua/rus/rozsylka/kakbolet/010.html

    Александр Задорожный

    Как правильно болеть гриппом

    Доктор, у меня грипп, что вы мне посоветуете?
    - Встаньте от меня подальше.

    Наверное нет на свете человека, кто хотя бы однажды не переболел гриппом. И это не удивительно - ежегодно до 15% населения Земли заболевает этим недугом. Отношение к гриппу различных людей неодинаковое: от абсолютно равнодушного до панического. Те, кто не отличают грипп от банальной ОРВИ (острой респираторно-вирусной инфекции), относятся к нему пренебрежительно и самоуверенно, а те, кто уже имели негативный опыт заболевания настоящим гриппом, относятся к нему осторожно и предпочитают избегать повторного заболевания.

    Каков же грипп на самом деле? Согласно оценки ВОЗ (Всемирной Организации Здравоохранения) грипп является потенциально смертельным заболеванием, и эта оценка является небезосновательной.

    Грипп - это острое инфекционное заболевание, поражающее органы дыхания, нервную, сердечно-сосудистую и др. системы. ^ Возбудитель гриппа - вирус, который размножается в слизистой оболочке дыхательных путей. Он распространяется в воздухе с мельчайшими капельками слюны, слизи и мокроты, выделяемыми больными людьми и носителями при чиханье, кашле, разговоре. Основное отличие гриппа от других острых респираторных вирусных инфекций (ОРВИ), что он начинается остро, то есть внезапно . После скрытого (инкубационного) периода, продолжительностью не более двух дней появляются симптомы гриппа.

    ^ Характерными особенностями гриппа являются резкое повышение температуры тела (до 40°С), интенсивная головная боль, боль и ломота во всем теле и в мышцах, светобоязнь (больно или неприятно смотреть на свет), болезненность при движении глаз. Подъем температуры сопровождается сильным ознобом. Грипп буквально шокирует своими симптомами – высокой температурой, жуткой слабостью. Это все может сопровождаться признаками начинающегося поражения органов дыхания: заложенностью носа, першением в горле и типичным для гриппа ощущением саднения за грудиной. На 2-е сутки болезни часто возникает мучительный кашель, боль за грудиной по ходу трахеи, появляющиеся в результате поражения слизистой оболочки трахеи. Но чаще всего кашель и насморк приходят позже или не появляются вообще.

    Другие ОРВИ, в отличие от гриппа, набирают обороты постепенно, начинаясь с першения в горле, насморка, чихания и общей вялости. На третий, четвертый день начинается подъем температуры. А при гриппе к этому дню уже начинаются осложнения. Именно осложнения представляют собой наибольшую опасность для здоровья и жизни больного гриппом. Как правило, они развиваются во время гриппа и (или) в течение первых двух недель после заболевания.

    ^ Наиболее частые осложнения гриппа:


    • Вторичные бактериальные респираторные заболевания (пневмония, бронхит, менингит, ларинготрахеобронхит, инфекции уха, средний отит и др.);

    • Обострение хронических заболеваний легких (астма, бронхит и др.);

    • Декомпенсация сердечно-сосудистых заболеваний (миокардит, перикардит);

    • Воспаление почек, обострение почечной недостаточности;

    • Обострение эндокринных расстройств (сахарный диабет);

    • Патологии беременности.

    • Обострение неврологических расстройств, радикулиты.
    Осложнения гриппа требуют лечения в стационаре. Осложнения гриппа могут быть смертельно опасны - практически все смертельные случаи от гриппа обусловлены развившимся осложнением. Большинство осложнений гриппа являются результатом неправильного его лечения и неправильного поведения больных.

    Как же правильно болеть гриппом, чтобы благополучно выйти из него и избежать осложнений? Давайте вместе попытаемся понять, что же именно происходит в организме во время гриппа. Для этого вначале познакомимся с главным виновником проблем - возбудителем гриппа. Этот возбудитель является вирусом.

    Вирусы, в отличие от других представителей живого мира, не являются, строго говоря, самостоятельными живыми организмами. Вне живых объектов они имеют вид органического вещества с кристаллической структурой, без признаков жизни, но при попадании в клетку “оживают”.

    Гемагглютинин - поверхностный белок вируса гриппа, обеспечивающий способность вируса присоединяться к клетке-хозяину.

    Нейраминидаза - поверхностный белок вируса гриппа, отвечающий,

    Во-первых, за способность вирусной частицы проникать в клетку, и,

    Во-вторых, за способность вирусных частиц выходить из клетки после размножения.

    Нуклеокапсид - генетический материал (РНК) вируса заключенный в белковую оболочку (капсулу).

    Заражение вирусом гриппа, также как и другими ОРВИ, происходит через верхние дыхательные пути. При попадании в дыхательные пути, вирусы при помощи гемагглютинина прикрепляются к клетке. Фермент нейраминидаза разрушает клеточную мембрану клеток слизистой оболочки, и вирус проникает внутрь клетки. Это процесс возможен лишь при рН 5-6,то есть в кислой среде. Затем вирусная РНК проникает в клеточное ядро и заставляет его производить новые вирусные частицы по своей программе. По мере накопления в клетке, новые вирусы высвобождаются (одновременно происходит разрушение клетки, ее лизис) и поражают другие клетки.

    Размножение вирусов может протекать с исключительно высокой скоростью: при попадании в верхние дыхательные пути одной вирусной частицы уже через 8 часов количество инфекционного потомства может достичь 10³, а концу первых суток - 10²³. Высочайшая скорость размножения вируса гриппа объясняет столь короткий инкубационный период (время прошедшее от момента заражения до появления признаков заболевания) - 1-2 суток. Одна зараженная клетка производит многие сотни вирионов.

    Затем вирусы попадают в кровь и разносятся по всему организму. Именно выброс вирусов в кровь и разнос их по всему телу являются одной из основных причин обусловливающих сильную интоксикацию при гриппе. В отличие от большинства других вирусов, вызывающих простудные ОРВИ, вирус гриппа имеет оболочку, состоящую из липидов, которые и являются основным фактором, вызывающим явления тяжелой интоксикации. Процесс размножения вирусов происходит при температуре 32-37°С, а при температуре выше 38°С этот процесс замедляется и при дальнейшем повышении - прекращается. Одновременно, с повышением температуры тела, в организме развиваются процессы, способствующие гибели вирусов.

    Непременным условием проникновения вируса в клетку является наличие кислой среды с рН 5-6. В норме реакция крови, а также и слизистого секрета дыхательных путей слабощелочная: рН больше 7, что само по себе представляет собой естественное препятствие для проникновения вируса. Но при охлаждении слизистой оболочки сосуды сужаются, кровоток ухудшается и в ткани происходит накопление кислоты - происходит снижение рН и, соответственно, возникают благоприятные условия для проникновения вируса внутрь клетки.

    Поэтому первое правило профилактики гриппа: дышите исключительно носом . Носовое дыхание, во-первых, способствует согреванию воздуха, поступающего в бронхи и легкие, и это предохраняет дыхательные пути от охлаждения. Во-вторых, при прохождении через носовые ходы, воздух очищается от всех находящихся в нем посторонних частичек, в том числе и вирусов, которые осаждаются на слизистой носа и затем вместе со слизью при помощи специальных ворсинок удаляются через пищевод в желудок, где происходит их обезвреживание.

    Второе правило: следите за тем, чтобы стопы ваших ног и кисти рук всегда были теплыми . Между ними и верхними дыхательными путями (ВДП) существует рефлекторная связь: понижение температуры стоп и кистей приводит к ухудшению кровообращения в слизистой ВДП и понижению их температуры. И, наоборот, согревание ног и рук, соответственно, способствует улучшению кровообращения и повышению температуры слизистой оболочки верхних дыхательных путей. К сожалению, очень часто бывает ситуация, когда у человек постоянно ноги холодные, но он этого даже не замечает. В таком случае обычно рекомендуют регулярные контрастные ванночки на ноги и руки. Лучше всего их делать по потребности, но минимум 1-2 раза в день, особенно на ночь.

    Проводится процедура следующим образом. В тазик или в ванночку наливается теплая вода. Первоначальная температура воды должна быть немного больше температуры стоп, так, чтобы субъективно, по ощущениям, вода казалась теплой. Затем, по мере согревания ног, постепенно добавляется горячая вода. Максимальная температура воды - 41-42°С. Длительность процедуры не меньше 15 минут, можно больше - до часа, до покраснения стоп и появления ощущения тепла во всем теле. Если у вас имеется насморк или заложен нос, то исчезновение этих симптомов, также может быть критерием для завершения процедуры.

    После завершения прогревания ног их необходимо одномоментно окунуть в холодную воду или окатить холодной водой из кувшина. Чем холоднее вода - тем сильнее эффект. Если этого не сделать, то через короткое время ноги остынут и процедура будет неэффективной.

    Многие боятся обливать ноги холодной водой, но, если вы хорошо прогреетесь, то кроме пользы, вы еще получите удовольствие. После обливания ног холодной водой их нужно растереть досуха и одеть носки. После этого желательно 10-15 минут походить. Такое контрастное обливание возбуждает кровообращение в ногах и, при регулярном выполнении этой процедуры вы почувствуете, что ваши ноги уже не мерзнут. А это важно для профилактики гриппа и простуд.

    Такую же процедуру можно одновременно, при необходимости, провести и для кистей рук. Но часто бывает, что прогревание ног способствует согреванию рук и это является критерием завершения процедуры. Если этого не происходит - желательно отдельно согреть кисти рук. Очень важно делать контрастную ванночку именно так, как это описано.

    ^

    Важно постоянно следить за тем, чтобы ноги не мерзли.

    При заложенности носа и насморке желательно ограничить прием жидкости, лучше пить жидкости вечером, когда вы уже не планируете выходить на холод.

    ^

    Третье правило - пить меньше жидкости, особенно при частом пребывании в условиях холода.

    Четвертое правило профилактики заражения гриппом - по-возможности, избегайте лишних контактов, особенно в публичных местах и транспорте, пользуйтесь защитными масками.

    Во время эпидемии гриппа необходимо ограничить употребление белковой пищи, которая закисляет организм, и увеличить содержание сырых (живых) продуктов питания (яблоки, капуста, петрушка, сельдерей, топинамбур, апельсины, мандарины, лимоны и т.д.). Хорошими профилактическими и лечебными свойствами по отношению к гриппу обладает сырой картофель. Он содержит большое количество витамина С, а также вещества имеющие противогриппозную активность. Сырые продукты нужно употреблять при каждом приеме пищи. Лучше с них начинать. Это способствует высокому содержанию лейкоцитов в периферической крови, и, соответственно, поддержанию высокого уровня иммунитета. Также хорошо использовать в качестве напитков живые, свежевыжатые соки (фреш).

    Для профилактики гриппа можно использовать 0,25% мазь оксолина. В период подъема и максимальной вспышки гриппа (обычно на протяжении 25 дней), или при контакте с больными гриппом, для индивидуальной профилактики гриппа, применяют 0,25% мазь, которой ежедневно 2 раза в день (утром и вечером) смазывают слизистую оболочку носа. Оксолин препятствует размножению вируса.

    Все эти вышеперечисленные правила профилактики гриппа помогают до заражения вирусом гриппа - до попадания его на слизистую дыхательных путей и проникновение в клетки слизистой оболочки. После этого, как вы уже знаете, присходит размножение вирусов в клетках слизистой. И далее начинается второй этап гриппозного процесса - выход вируса в кровяное русло (такое состояние называется вирусемия). Здесь все профилактические меры, направленные на предупреждение заражения гриппом, уже бесполезны и необходимы меры связанные с развитием заболевания гриппом.

    ^

    Александр Задорожный

    Не так страшен грипп, как осложнения после него, - говорит одна женщина другой.

    - Я это знаю из своего опыта. Как раз после гриппа я вышла замуж за участкового врача.

    В прошлый раз мы с вами детально рассмотрели процесс инфицирования (заражения) организма вирусом гриппа и условия, при которых это заражение происходит. Надеюсь, что вы учли и воспользовались рекомендациями по профилактике заболевения гриппом, приведенными в прошлом выпуске.

    Сегодня я расскажу о том, как себя вести, если вы все-таки заболели гриппом: как правильно болеть гриппом. Правильное поведение на этапе проявления гриппозного процесса в случае инфицирования поможет не только предупредить развитие осложнений, но и, как это не парадоксально звучит, добиться оздоровительного эффекта. Это значит, что при правильном болении гриппом можно выйти из болезни более здоровым, чем до нее.

    ^

    Ежегодно, обычно в холодное время года, случаются эпидемии гриппа и поражают до 15% населения Земного шара: как людей, так и животных и птиц.

    Для вируса гриппа характерна антигенная изменчивость, которая является фундаментальной особенностью вирусов гриппа типов А и В. Как правило, каждый год происходят изменения в структуре поверхностных антигенов вируса - гемагглютинине и нейраминидазе. В результате такой изменчивости возникают новые типы (штаммы) вируса гриппа, на которые отсутствует иммунитет у людей, ранее переболевших гриппом.

    Для осуществления своего жизненного цикла (размножения) вирус гриппа проникает внутрь клетки. Это процесс возможен лишь при рН 5-6, то есть в кислой среде.

    Вирусная РНК, генетический код вируса, проникает в клеточное ядро и заставляет его производить новые вирусные частицы по своей программе. По мере накопления в клетке, новые вирусы высвобождаются (одновременно происходит разрушение клетки, ее лизис) и поражают другие клетки. Одна зараженная клетка производит многие сотни вирионов.

    В процессе размножения вирусы попадают в кровь и разносятся по всему организму. Выход вирусов гриппа в кровь сопровождается ознобом и последующим подьемом температуры. Именно выброс вирусов в кровь и разнос их по всему телу являются началом периода острых клинических проявлений гриппа.

    Протекание заболевания зависит от специфического иммунитета организма - наличия антител к попавшему в кровь виду вируса гриппа, а также от уровня неспецифической резистентности (сопротивляемости) организма зависящей от той или иной комбинации многих факторов, определяющих общий уровень здоровья человека.

    При достаточно высоком уровне сопротивляемости организма, после первого выхода в кровь вирусных тел дальнейшего их размножения в организме не происходит и болезнь постепенно идет на спад.

    Если же в организме существуют места, где имеются условия благоприятные для проникновения вирусов внутрь клеток, происходит новый цикл их размножения с последующей гибелью зараженных клеток и повторным выбросом вирусных частиц в кровь, течение болезни утяжеляется и повышается вероятность развития осложнений и переход болезни в гипертоксическую форму.

    В зависимости от общего состояния здоровья, возраста, от того, контактировал ли больной с данным типом вируса ранее у него может развиться одна из 4-х форм гриппа: легкая, среднетяжелая, тяжелая и гипертоксическая. При тяжелом течении гриппа часто возникают необратимые поражения сердечно-сосудистой системы, дыхательных органов, центральной нервной системы, провоцирующие заболевания сердца и сосудов, пневмонии, трахеобронхиты, менингоэнцефалиты. При гипертоксической форме гриппа возникает серьезная опасность летального исхода (смерти). После перенесенного гриппа в течение 2-3 недель могут сохраняться явления постинфекционной астении: утомляемость, слабость, головная боль, раздражительность, бессонница и др.

    Развитие вирусного процесса в организме человека требует от него существенных затрат энергетических и материальных ресурсов, это сопровождается блокированием естественных физиологических процессов, что приводит к накоплению токсических продуктов которые, в свою очередь, также способствуют значительному ухудшению общего состояния больного гриппом.

    Почему постоянно происходят мутации вируса гриппа, вследствии которых, в отличие от других вирусных инфекций, невозможна выроботка стойкого иммунитета к вирусу гриппа?

    ^

    Для чего нужен вирус гриппа, какую функцию он выполняет в природе?

    Для чего человеку нужно болеть гриппом?

    Ответы на эти вопросы помогут нам с вами понять: как правильно болеть гриппом. Поэтому прошу принять изложенную ниже информацию, как рабочую гипотезу, необходимую для понимания алгоритма поведения при гриппе.

    На сегодняшний день существуют очень веские доказательства того, что вирусы, в том числе и вирус гриппа, играют очень важную роль в обмене генетической информации между различными живыми организмами. Такой обмен необходим для лучшей адаптации живых организмов к изменяющейся внешней среде. Именно вирусы являются разносчиками «передового опыта в биосфере» по отношению к высокоорганизованным организмам? И наиболее важная роль в этом принадлежит вирусу гриппа.

    На клеточном уровне мы все - мутанты, и другими быть не можем, поскольку и эволюционный прогресс - не что иное, как процесс изменения генетической структуры популяций в сторону увеличения разнообразия форм и их лучшего приспособления к условиям окружающей среды.

    Медицинская валеология - наука изучающая процессы индивидуального здоровья - отмечает одну важнуя закономерность: чем больше энергии накоплено в каждой отдельной клетке и, соответственно, в организме в целом, тем больший диапазон внешних воздействий он способен выдержать, и тем выше уровень здоровья человека. При высоком уровне здоровья процессы энергообеспечения клеток происходят в аэробном режиме (с хорошим доступом кислорода). Чем ниже уровень здоровья - тем ниже уровень аэробного окисления и выше уровень анаэробных процессов. При этом образуется большое количество молочной кислоты, которая создает вокруг клеток кислую среду.

    Высокий уровень здоровья гарантирует надежную защиту от заражения вирусом. В здоровом организме отсутствуют условия для заражения. Чем слабее организм, чем ниже уровень его здоровья, тем больше закислены ткани продуктами жизнедеятельности клеток. Наиболее продуктивными в этом отношении являются клетки раковых опухолей, которые, в отличие от здоровых клеток, обеспечивают себя энергией преимущественно анаэробным путем (без доступа кислорода).

    Таким образом, чем ниже уровень здоровья человека, тем больше клеток, работающих в анаэробном режиме. В таком организме создаются благоприятные условия для заражения вирусом. Можно сказать, что при низком уровне здоровья организм как бы нуждается в заражении вирусом. Звучит парадоксально, не правда ли? Но если поразмыслить, то получается что наиболее подвержены заражению вирусом гриппа раковые клетки. А сам вирус является той магической пулей, которая способна убить раковую клетку. Можно предположить, что заражение вирусом гриппа способствует избавлению организма от раковых и других ослабленных, нежизнеспособных клеток.

    Итак, ваша задача в процессе боления гриппом - "рождение нового гармоничного мира": повышение уровня своего здоровья. Для этого вам нужно будет максимально мобилизовать свои силы, объединить их с силами противника (гриппа) и направить эту объединенную энергию на оздоровление себя любимого. Поэтому и все наши действия при гриппе должны быть направлены не на борьбу с вирусом, а на оптимизацию процессов происходящих в организме во время гриппа и на использование реакции организма на вирус гриппа с оздоровительной целью. На практике это означает, что мы как бы используем вирус гриппа, проникший в наш организм, в качестве лекарства. Мы даем ему возможность немножко "погулять" по нашему телу, выявить все больные клетки и уничтожить их. Одновременно используем свойство вируса гриппа мобилизовать в организме защитные силы и процессы и запускаем оздоровительные и очистительные реакции. Правильное поведение при гриппе подобно управляемой ядерной реакция на атомной электростанции: если все делать правильно - получим пользу, если контроль утрачен - пострадаем.

    Какой же должна быть последовательность ваших действий? В организме человека происходит множество процессов, на которые расходуется энергия. При гриппе потребность в энергии резко возрастает, поэтому организм предпринимает экстренные меры для повышения обменных процессов, что сопровождается резким ознобом. Чтобы помочь себе в этой ситуации нужно предпринять меры для того, чтобы насытить организм теплом: попарить ноги, принять ванну, обложиться грелками, закутаться в одеяло, выпить горячего чаю с лимоном. Прогревание должно продолжаться до тех пор, пока не прекратится озноб. Далее, для уменьшения энергозатрат и мобилизации сил необходим, во-первых, постельный режим. Переваривание пищи является весьма затратным с точки зрения энергетики организма, поэтому, во-вторых, лучше всего прекратить прием пищи, особенно белковой и термически обработанной - она требует весьма больших энергозатрат. В третьих, необходимо обеспечить нейтрализация и удаление из организма "шлаков" и токсинов.

    При гриппе существуют два основных источника интоксикации. Первый - это вирусы гриппа, циркулирующие в крови, и второй - толстый кишечник. При любом заболевании, сопровождающемся ухудшением общего состояния (самочувствия) человека, особенно при гриппе, происходит увеличение проницаемости кишечного барьера, в результате чего увеличивается всасывание в кровь кишечных токсинов, которые еще более усугубляют состояние больного. Поэтому при первых же признаках недомогания, лучше всего в первую очередь очистить кишечник. Сделать это можно различными способами:

    ^

    1. При помощи клизмы.

    2. Приемом слабительных средств.

    3. Комбинацией первого и второго способов.

    Остановлюсь подробно на постановке клизмы. Ее целью является опорожнение кишечника от каловых масс, являющихся источником интоксикации. Нам нужно приготовить грушу для постановки клизмы, объемом 200-500 мл, а также, в качестве рабочей жидкости, водный раствор соли, так как клизма должна быть слабо гипертонической - 1,5-2%. Для этого в 500 мл воды растворяем одну чайную ложку (с верхом) кухонной соли. Перед постановкой клизмы обязательно проконтролируйте чтобы ваши ноги были теплыми - тогда процедура будет эффективной. При необходимости, можно сделать ванночку на ноги, так, как это было описано в прошлом выпуске рассылки. Если вас знобит, температура воды должна быть около 39-40°С, если же вам жарко - 30-35°. После введения жидкости в прямую кишку нужно подержать ее до появления позыва. Если опорожнение было недостаточным, можно процедуру повторить.

    Кроме клизмы, для проведения быстрой детоксикации очень хорошо помогает активированный уголь. Для проведения детоксикации нужно взять 25-30 г активированного угля (100-120 таблеток!). Уголь нужно смолоть в кофемолке или растереть в мелкий порошок в ступке или другой посуде. Если вы будете пользоваться электрокофемолкой, то крышку сразу не открывайте, дайте осесть угольной пыли. После чего осторожно пересыпьте угольный порошок в стакан со 100 мл воды, акуратно перемешайте до смачивания угля водой, затем взболтайте и быстро выпейте угольную взвесь. То что останется, нужно доесть ложкой, после чего прополощите рот водой. Внимание! Ни в коем случае не пытайтесь проглотить сухой угольный порошок и остерегайтесь чтобы порошок не попал в ваши дыхательные пути! Более комфортными для приема внутрь являются существующие на сегодня современные препараты активированного угля, растворимые в воде, с большой площадью поверхности и соответственно меньшей дозировкой.

    С целью очищения кишечника в качестве слабительного при гриппе можно принимать только осмотические слабительные. К таковым относятся солевые слабительные типа карловарской соли, трускавецкой соли "Барбара", сульфата магния (магнезии). Принимается 20-25% раствор солевого слабительного: 1-2 столовых ложки на 150-250 мл щелочной минеральной воды типа "Боржоми". Как противотоксическое средство применяют тиосульфат натрия в виде 10-15% раствора - 2 чайные ложки на 100-150 мл воды. В готовом виде используются моршинская ропа и венгерская минеральная вода "Хуняди янош" в количестве 100-150 мл на прием. Можно также использовать пищевой заменитель сахара, сорбит: 1-2 ст ложки на 150-250 мл воды. Сорбит можно добавлять в чай с лимоном. Такая процедура называется кишечный лаваж.

    Перед приемом слабительного раствора также нужно проконтролировать, чтобы ноги были теплыми. Слабительное лучше принимать на пустой желудок, тогда оно быстрее подействует. При желчекаменной болезни такую процедуру нужно проводить осторожно, концентрация растворов должна быть в 2-3 раза меньше, а при наличие приступов лучше от нее отказаться. После приема слабительного нужно около часа полежать на правом боку на теплой грелке до появления чувства жажды, после этого можно попить немного жидкости. Лекарственые слабительные при гриппе лучше не использовать. Эти процедуры: очистка кишечника и прием активированного угля значительно улучшает состояние больного гриппом, уменьшается или полность проходит головная боль и ломота в теле, снижается температура. Повторять такие чистки нужно каждый день - до полного выздоровления.

    При манифестации (проявлении) гриппозного процесса происходит повышение температуры тела - это приспособительная реакция, способствующая резкому ускорению всех физиологических процессов в организме, в том числе и синтеза интерферона, который блокирует биосинтез вирусных частиц в зараженной клетке и тем самым уменьшает развитие вирусного процесса. Кроме того, как я уже ранее упоминал, при повышении температуры тела выше 38°С процесс размножения вирусов замедляется и при дальнейшем повышении - прекращается. Одновременно, благодаря повышению температуры тела, в организме развиваются процессы, способствующие улучшению нарушенного метаболизма (обмена веществ) ликвидации метаболического и кислородного долга в клетках и тканях, гибели нежизнеспособных и больных клеток и выведению токсических продуктов из организма.

    Многие боятся высокой температуры, особенно у детей. На самом деле подъем температуры не так уж страшен и довольно легко управляем. Единственный орган, который "боится" подъема температуры до 40°С - это мозг. Он, действительно, не выносит перегрева. Остальным частям тела такой подьем температуры только на пользу. Поэтому никогда не стремитесь любой ценой сбить температуру, тем более если вы больны гриппом. Если температуру сбить жаропонижающими препаратами - вирус продолжает размножаться и его количество в организме будет катастрофически увеличиваться, соответственно будет усиливаться его токсическое повреждающее действие, то есть заболевание будет усугубляться - больше будет поврежденных клеток, органов и тканей - дольшим будет воосстановительный период и большим будет риск развития осложнений вследствии вирусного поражения организма.

    ^

    Высокую температуру у ребенка, конечно же надо контролировать. Но лучше это делать естественными методами. Жароснижающий препарат, в крайнем случае, можно дать однократно (это для слабонервных родителей, для самоуспокоения) - если температура упала, а затем опять поднялась, то повторно давать не стоит - могут быть осложнения и переход болезни в затяжное течение.

    Больше всего от температуры страдает мозг, поэтому необходимо сделать все чтобы обеспечить отток тепла от головы. Это и компрессы на голову и раздевание ребенка, и протирание его влажным полотенцем. Нужно обратить внимание на состояние ребенка: если его знобит - лучше делать обтирания теплой водой, если ему тепло - можно обтирать прохладной. В любом случае обратите внимание, как ребенок реагирует на обтирание - если ему не нравится - измените температурный режим на противоположный.

    Обратите внимание на конечности ребенка - кисти рук и стопы ног, а также на кожу. Если они холодные, нужно их согреть в теплой воде (ванночка) или другим способом (грелка, растирание или согревание теплыми руками), как только они согреются приток крови к ним усилится и, соответственно, увеличится теплоотдача и температура обязательно понизится на 0,5-1 градус. Одновременно дать влажный компресс на лоб (смоченая водой ткань). Этого бывает достаточно, чтобы ребенок почувствовал себя комфортнее и, может быть, заснул.

    Причиной спазмов у детей при повышенной температуре является перегрев мозга и большая разница температуры между мозгом и конечностями. Вывод: если у ребенка теплые ручки и ножки и голова достаточно охлаждается (посредством сменных компрессов) все будет в порядке. Конечно же эти процедуры требуют терпения и времени (проще дать таблетку), но зато ребенок выйдет из болезни не только не ослабленным, но наоборот приобретет полезный жизненный опыт и иммунитет. Обращайте внимание на психологическое состояние ребенка: если он в хорошем настроении и играет - можете особо не беспокоиться о повышенной температуре. Если же плачет, капризничает или ослабленный, вялый - он требует повышенного внимания и наблюдения. Самое главное, что требуется от родителей - это терпение и настойчивость. Конечно, легче дать таблетку от температуры и пойти спать, но это временное облегчение может в дальнейшем привести к неприятным последствиям и затягиванию процесса

    Надеюсь, теперь вы знаете, как контролировать температуру. Хочу только предупредить, что высокая температура при гриппе может держаться 3-4 дня, особенно если вы недостаточно очистили кишечник, продолжаете принимать пищу, не соблюдаете постельный режим или ваш организм сильно "зашлакован". Поэтому выполнение рекомендаций по режиму и детоксикации организма будет способствовать более быстрому выходу из болезни. Мои наблюдения свидетельствуют о том, что при правильном и точном выполнении всех рекомендаций болезнь продолжается не больше 4-5 дней.

    Бывают случаи, когда организм не способен отреагировать на болезнь повышением температуры тела. А такой подьем при гриппе крайне необходим. Один из отцов медицины сказал по этому поводу примерно следующее: "Дайте мне средство для повышения температуры и я вылечу любое заболевание". Именно поэтому термические процедуры в виде бани, так популярны у всех народов, как средство лечения и оздоровления. Поэтому, если при гриппе у вас не повысилась температура, вам прийдется предпринять все меры для ее повышения.

    Если интоксикация не очень выражена и у вас есть силы, можно принять теплую ванну, постепенно повышая ее температуру, но не слишком усердствуя, чтобы не ослабнуть совсем. Прямо в ванне, если есть соответствующие условия, можно сделать клизму. Прогревшись таким образом нужно надеть на себя хлопчатобумажное белье или спортивный костюм, лечь в постель, укутавшись в одеяло и обложившись грелками. В подмышечную область необходимо поставить термометр для контроля температуры тела и лежать таким образом, не раскрываясь, до тех пор пока температура не подниметься до 38,5°С-39°С. Голова при этом должна быть открыта и, при необходимости ее можно охлаждать при помощи компрессов. Если вы не имеете сил для ванны, то можно сразу начать с прогревания в постели - будет немного медленнее. Очень неплохо для лучшего согрева выпить 150-200 мл горячего чая с медом лимоном.

    Итак, вы почистились, согрелись, что же дальше? А дальше нужно начать понемногу пить потогонный чай. Это может быть малиновый, липовый чай, чай с цветами бузины... Пить нужно небольшими порциями - по 1-2 глотка через 10-15 минут, поэтому лучше чай держать в термосе или на водяной бане, чтобы он не остывал. Потогонный чай не должен быть очень горячим. Когда вы начнете потеть, постарайтесь как можно дольше не раскрываться, чтобы не остыть. Если очень постараться, то такое состояние потоотделения может продолжаться 3-4 часа. Если появится слабость или чувство голода, можно в чай добавить меда. Также можно при слабости выпить щелочной минеральной воды типа "Боржоми" или огуречный или капустный рассол, разведя его на половину или две трети водой.

    При гриппе очень важно соблюдать постельный режим и как можно больше спать. Это нужно для уменьшения нагрузки на сердце, которое при гриппе работает очень интенсивно. Сон способствует меньшему притоку крови к голове и тем самым защищает мозг от воздействия токсинов. Когда нормализуется температура, исчезнут признаки интоксикации и появится чувство голода - не спешите наедаться - день два достаточно будет попить фруктовые соки или поесть сырые фрукты или овощи, пока вы полностью не удостоверитесь в своем выздоровлении. А оно, при правильном соблюдении приведенных здесь рекомендаций, настанет на 4-5 день. После этого нужно будет принять ванну или душ, чтобы смыть с себя весь пот и грязь собравшуюся на вашем теле за время болезни. Если есть силы, ванну можно пинимать ежедневно. После ванны вы почувствуете насколько обновилось ваше тело. Если вы когда-нибудь в жизни пробовали голодать не меньше 10 дней, то вы сможете оценить свое состояние после 3-5 дней правильного боления гриппом - его можно сравнить с состоянием, которое возникает после очищения организма голодом. Подтверждением этого может быть еще одно приятное для многих, но может быть несколько неожиданное последствие правильного поведения во время гриппа: снижение веса тела до 2-5 кг.

    На последок хочу сказать, что основные принципы, описанные здесь, применимы для любого острого заболевания. Кратко перечислю их еще раз: пост, очищение через кишечник (клизмы, кишечный лаваж) и кожу (потоотделение), детоксикация (активированным углем), постельный режим, поддержка, а не сбивание, высокой температуры тела, питьевой режим, обеспечивающий достаточное потоотделение, но питье не должно быть чрезмерным и слишком обильным.

  • Вирусология (от лат. vīrus - «яд» и греч. logos — слово, учение) - наука о вирусах , раздел биологии.

    Вирусология выделилась в самостоятельную дисциплину в середине XX века. Она возникла как ветвь патологии - патологии человека и животных с одной стороны, и фитопатологии - с другой. Первоначально вирусология человека, животных и бактерий развивалась в рамках микробиологии. Последующие успехи вирусологии в значительной мере основаны на достижениях смежных естественных наук - биохимии и генетики . Объектом исследования вирусологии являются субклеточные структуры - вирусы. По своему строению и организации они относятся к макромолекулам, поэтому с того времени, когда оформилась новая дисциплина, молекулярная биология , объединившая различные подходы к изучению структуры, функций и организации макромолекул, определяющих биологическую специфичность, вирусология стала также составной частью молекулярной биологии. Молекулярная биология широко применяет вирусы как инструмент исследования, а вирусология для решения своих задач используют методы молекулярной биологии.

    История вирусологии

    Вирусные болезни, такие как оспа, полиомиелит, желтая лихорадка, пестролистность тюльпанов известны с давних времен, однако о причинах, их вызывающих долгое время никто ничего не знал. В конце XIX столетия, когда удалось установить микробную природу ряда инфекционных заболеваний, патологи пришли к заключению, что многие из распространенных болезней человека, животных и растений нельзя объяснить заражением бактериями.

    Открытие вирусов связано с именами Д.И.Ивановского и М.Бейеринка . В 1892 г. Д.И.Ивановский показал, что заболевание табака - табачная мозаика - может быть перенесено от больных растений к здоровым, если их заразить соком больных растений, предварительно пропущенным через специальный фильтр, задерживающий бактерии. В 1898 году М.Бейеринк подтвердил данные Д.И.Ивановского и сформулировал мысль о том, что заболевание вызывается не бактерией, а принципиально новым, отличным от бактерий, инфекционным агентом. Он назвал его contagium vivum fluidum - живое жидкое заразное начало. В то время для обозначения инфекционного начала любой болезни употребляли термин «virus» - от латинского слова «яд», «ядовитое начало». Сontagium vivum fluidum стали называть фильтрующимся вирусом, а позже - просто «вирусом». В том же, 1898 году Ф.Лефлер и П.Фрошш показали, что через бактериальные фильтры проходит возбудитель ящура крупного рогатого скота. Вскоре после этого было установлено, что и другие болезни животных, растений, бактерий и грибов вызываются подобными агентами. В 1911 году П.Раус открыл вирус, вызывающий опухоли у кур. В 1915 году Ф.Туорт, а в 1917 году Ф.Д’Эрель независимо друг от друга открыли бактериофаги - вирусы, разрушающие бактерии.

    Природа этих возбудителей болезней, оставалась непонятной более 30 лет - до начала 30-х годов. Это объяснялось тем, что к вирусам нельзя было применить традиционные микробиологические методы исследования: вирусы, как правило, не видны в световой микроскоп и не растут на искусственных питательных средах.

    Категории:Детализирующие понятия:
  • Аномалии развития нервной системы. Черепно-мозговые грыжи. Спинномозговые грыжи. Краниовертебральные аномалии.
  • Аномалии развития половых органов. Этиопатогенез, классификация, методы диагностики,клинические проявления, методы коррекции.
  • Достижения современной вирусологии огромны. Ученые все более глубоко и успешно познают тончайшую структуру, биохимический состав и физиологические свойства этих ультрамикроскопических живых существ, их роль в природе, жизни человека, животных, растений. Онковирусология упорно и успешно изучает роль вирусов в возникновении опухолей (рака), стремясь решить эту проблему века.

    К началу XXI века описано более 6 тыс. вирусов , принадлежащих к более, чем 2 000 видам, 287 родам, 73 семействам и 3 порядкам. Для многих вирусов изучены их структура, биология, химический состав и механизмы репликации. Продолжается открытие и исследование новых вирусов, которые не перестают поражать своим разнообразием. Так в 2003 году был открыт самый большой из известных вирусов – мимивирус.

    Открытие большого числа вирусов потребовало создания их коллекций, и музеев . Наиболее крупные среди них - в России (государственная коллекция вирусов в Институте вирусологии им. Д.И.Ивановского в Москве), США (Вашингтон), Чехии (Прага), Японии (Токио), Великобритании (Лондон), Швейцарии (Лозанна) и ФРГ (Брауншвейг). Результаты научных исследований в области вирусологии публикуются в научных журналах, обсуждаются на международных конгрессах организуемых каждые 3 года (впервые состоялся в 1968). В 1966 на 9-м Международном конгрессе по микробиологии впервые избран Международный комитет по таксономии вирусов (International Committee on Taxonomy of Viruses – ICTV).

    В рамках общей, то есть молекулярной вирусологии продолжается изучение фундаментальных основ взаимодействия вирусов и клеток. Достижения молекулярной биологии, вирусологии, генетики, биохимии и биоинформатики показали, что значение вирусов не ограничивается только тем, что они вызывают инфекционные заболевания.

    Было показано, что особенности репликации некоторых вирусов приводят к захвату вирусом клеточных генов и переносу их в геном другой клетки – горизонтальному переносу генетической информации, что может иметь последствия, как в эволюционном плане, так и в плане злокачественного перерождения клеток.

    При секвенировании генома человека и других млекопитающих было выявлено большое число повторяющихся нуклеотидных последовательностей, представляющих собой дефектные вирусные последовательности – ретротранспозоны (эндогенные ретровирусы), которые могут содержать регуляторные последовательности, влияющие на экспрессию соседних генов. Их обнаружение и изучение привело к активному обсуждению и исследованию роли вирусов в эволюции всех организмов, в частности в эволюции человека.

    Новым направлением вирусологии является экология вирусов . Обнаружение вирусов в природе, их идентификация и оценка их количества представляют собой очень сложную задачу. В настоящее время выработаны некоторые методические приемы, позволяющие оценить количество некоторых групп вирусов, в частности бактериофагов, в природных образцах и проследить их судьбу. Получены предварительные данные, свидетельствующие о том, что вирусы оказывают существенное влияние на многочисленные биогеохимические процессы и эффективно регулируют численность и видовое разнообразие бактерий и фитопланктона. Однако изучение вирусов в этом аспекте только началось, и нерешенных проблем в этой области науки еще очень много.

    Достижения общей вирусологии дали мощный толчок развитию ее прикладных направлений. Вирусология превратилась в обширную область знаний, важную для биологии, медицины и сельского хозяйства.

    Вирусологи осуществляют диагностику вирусных инфекций человека и животных, изучают их распространение, разрабатывают методы профилактики и лечения. Крупнейшим достижением явилось создание вакцин против полиомиелита, оспы, бешенства, гепатита В, кори, жёлтой лихорадки, энцефалитов, гриппа, паротита, краснухи. Создана вакцина против вируса папилломы, с которым связано развитие одного из видов рака. Благодаря вакцинации полностью ликвидирована натуральная оспа. Осуществляются международные программы полной ликвидации полиомиелита и кори. Разрабатываются методы профилактики и лечения гепатитов и иммунодефицита (СПИД) человека. Накапливаются данные о веществах с антивирусной активностью. На их основе создан ряд лекарственных препаратов для лечения СПИДа, вирусных гепатитов, гриппа, заболеваний, вызванных вирусом герпеса.

    Изучение вирусов растений и особенностей их распространения по растению привело к созданию нового направления в сельском хозяйстве – получению безвирусного посадочного материала. Меристемные технологии, позволяющие вырастить растения, свободные от вирусов, в настоящее время применяются для картофеля, ряда плодовых и цветочных культур.

    Исключительное значение на данном этапе имеют знания, накопленные о структуре вирусов и их геномов для развития генной инженерии. Ярким примером этого является использование бактериофага лямбда для получения библиотек клонированных последовательностей. Кроме того, на основе геномов разных вирусов создано и продолжает создаваться большое количество генно-инженерных векторов для доставки чужеродной генетической информации в клетки. Эти векторы используются для научных исследований, для накопления чужеродных белков, особенно в бактериях и растениях, и для генной терапии. В генной инженерии применяются некоторые вирусные ферменты, которые теперь производятся на коммерческой основе.

    Малые размеры и способность к образованию регулярных структур открыли перспективу использования вирусов в нанотехнологии для получения новых бионеорганических материалов: нанотрубок, нанопроводников, наноэлектродов, наноконтейнеров, для инкапсидации неорганических соединений, магнитных наночастиц и неорганических нанокристаллов строго контролируемых размеров. Новые материалы могут быть созданы при взаимодействии регулярно организованных белковых вирусных структур с металлосодержащими неорганическими соединениями. «Сферические» вирусы могут служить наноконтейнерами для хранения и доставки в клетки лекарственных препаратов и терапевтических генов. Поверхностно модифицированные инфекционные вирионы и вирусные субструктуры могут быть использованы в качестве наноинструментов (например, в целях биокатализа или получения безопасных вакцин).
    17. Титр бактериофага, методы его определения. Выявление вирусов животных и растений.

    Титр бактериофага - это количество активных фаговых частиц в единице объема исследуемого материала. Для определения титра бактериофага наиболее широко в работе с бактериофагами применяется метод агаровых слоев, предложенный А. Грациа в 1936 г. Этот метод отличается простотой выполнения и точностью получае­мых результатов и с успехом используется также для выделения бактериофагов.

    Сущность метода состоит в том, что суспензию бактериофага смешивают с культурой чувствительных бактерий, вносят в агар низкой концентрации («мягкий агар») и наслаивают на поверхность ранее подготовленного 1,5%-го питательного агара в чашке Петри. В качестве верхнего слоя в классическом методе Грациа использовался водный («голодный») 0,6%- й агар.В настоящее время для этих целей чаще всего применяют 0,7%-й питательный агар. При инкубации в течение 6-18 ч бактерии размножаются внутри верхнего «мягкого» слоя агара в виде множества колоний, получая питание из нижнего слоя 1,5%-го питательного агара, который применяется в качестве подложки. Низкая концентрация агара в верхнем слое создает пониженную вязкость, что способствует хорошей диффузии фаговых частиц и инфицированию ими бактериальных клеток. Инфицированные бактерии подвергаются лизису, в результате чего появляется потомство фага, которое вновь заражает нахо­дящиеся в непосредственной близости с ними бактерии. Образование негативной колонии для фагов Т-группы вызвано только одной частицей бактериофага, и, следовательно, число негативных колоний служит количественным показателем содержания бляшкообразующих единиц в исследуемом образце.

    Культура чувствительных к фагу бактерий используется в логарифмической фазе роста в минимальном количестве, обеспечивающем получение сплошного газона бактерий. Соотношение числа фаговых частиц и бактериальных клеток (множественность инфекции) для каждой системы «фаг - бактерия» подбирается экспериментально с таким расчетом, чтобы на одной чашке образовывалось 50-100 негативных колоний.

    Для титрования бактериофага может быть использован также однослойный метод, состоящий в том, что на поверхность чашки с питательным агаром вносят суспензии бактерий и бактериофага, после чего смесь распределяют стеклянным шпателем. Однако этот метод уступает в точности методу агаровых слоев и поэтому не нашел широкого применения.

    Техника титрования и культивирования бактериофагов. Для определения титра бактериофага последовательно разводят исходную фаговую суспензию в буферном растворе либо в бульоне (шаг разведения 10 -1). Для каждого разведения используют отдельную пипетку, а смесь интенсивно перемешивают. Из каждого разведения суспензии делают «высев» фага на газон чувствительных бактерий Е. coli В. Для этого 1 мл разведенного фага вносят в пробирку с 3 мл расплавленного и охлажденного до 48-50°С «мягкого агара», после чего в каждую пробирку добавляют 0,1 мл культуры чувствительного микроорганизма (Е. coli В), находящегося в логарифмической фазе роста. Содержимое перемешивают, вращая пробирку между ладонями и избегая образования пузырей. Затем быстро выливают на поверхность агаризованной (1,5%-й) питательной среды в чашке Петри и равномерно распределяют по ней, осторожно покачивая чашку. При титровании методом агаровых слоев следует засевать параллельно не менее двух чашек одного и того же разведения фага. После застывания верхнего слоя чашки переворачивают крышками вниз и помещают в термостат с температурой 37°С, оптимальной для развития чувствительных бактерий. Учет результатов производят через 18-20 ч инкубирования.

    Количество негативных колоний подсчитывают аналогично подсчету колоний бактерий, а титр фага определяют по формуле:

    Где N - количество фаговых частиц в 1 мл исследуемого материала; n -среднее количество негативных колоний на чашку; D - номер разведения; V - объем высеваемой пробы, мл.

    В том случае, когда необходимо определить множественность инфекции, параллельно проводят определение титра жизнеспособных клеток бактерий Е. coli В в 1 мл питательного бульона. Для этого делают разведение исходной суспензии бактериальных клеток до 10 -6 и высевают ее (0,1 мл) параллельно на 2 чашки. После инкубирования при температуре 37 °С в течение 24 ч подсчитывают количество образовавшихся колоний на чашке Петри и определяют титр клеток.

    Для выделения вирусов от человека, животных и растений исследуемый материал вводят в организм чувствительных к вирусам экспериментальных животных и растений или заражают культуры клеток (тканей) и культуры органов. Наличие вируса доказывается характерным поражением экспериментальных животных (или растений), а в культурах тканей - поражением клеток, так называемым цитопатическим действием, которое распознаётся при микроскопическом или цитохимическом исследовании. При В. и. применяется «метод бляшек» - наблюдение дефектов клеточного слоя, вызванных разрушением или поражением клеток в очагах накопления вируса. Вирионы, имеющие характерное строение у разных вирусов, могут быть идентифицированы при электронной микроскопии. Дальнейшая идентификация вирусов основана на комплексном применении физических, химических и иммунологических методов. Так, вирусы различаются по чувствительности к эфиру, что связано с наличием или отсутствием в их оболочках липидов. Тип нуклеиновой кислоты вируса (РНК и ДНК) может быть определён химическими или цитохимическими методами. Для идентификации вирусных белков используются серологические реакции с сыворотками, полученными путём иммунизации животных соответственными вирусами. Эти реакции дают возможность распознавать не только виды вирусов, но и их разновидности. Серологические методы исследования позволяют по наличию антител в крови диагностировать вирусную инфекцию у человека и высших животных и изучать циркуляцию среди них вирусов. Для выявления латентных (скрытых) вирусов человека, животных, растений и бактерий применяют специальные методы исследования.

    ВОПРОС №1 «ИСТОРИЯ ВИРУСОЛОГИИ. РОЛЬ ВИРУСОВ В ИНФЕКЦИОННОЙ ПАТОЛОГИИ ЖИВОТНЫХ ЧЕЛОВЕКА».

    В первый период – люди не знали сущности заболевания, только описывали его. В 18 столетии врач Дженер разработал против оспы вакцину, с помощью которой ее лечили. Далее заслуга Пастера, в его время существовало бешенство. Он доказал, что бешенство передается путем покуса. На питательных средах ничего не вырастало. После работ Пастера было выяснено, что заразные болезни вызываются мельчайшими организмами (микробами). Не один из методов бактериальных исследований не позволял выделить микробов, с присутствием которых связаны оспа, ящур, чума.

    В 1931 году предложили метод культивирования куриных эмбрионов. Этот метод отличается высокой чувствительностью, исключается заражение спонтанными вирусами. Наиболее быстрое развитие вирусологии началось после 1948 года. Эндерс предложил метод однослойных культур клеток и тканей. Этот метод позволил изучить многие вирусы, получить вакцины. Учение о вирусах формировалось в самостоятельную науку вирусологию, которая изучает вирусы, заболевания вызываемые ими. Общая вирусология изучает природу и происхождение вирусов, строение и химический состав, устойчивость к физико-химическим факторам, ее предметом является также взаимодействие вируса и клетки, генетику вирусов, особенности формирования иммунитета против вирусов, общих принципов диагностики и профилактики. Она изучает те же вопросы, что и общая вирусология. Вирусы как объекты имеют единицы измерения.

    ВОПРОС №2 «ПРЕДМЕТ И ЗАДАЧИ ОБЩЕЙ И ЧАСТНОЙ ВЕТЕРИНАРНОЙ ВИРУСОЛОГИИ. ИСТОРИЯ ОТКРЫТИЯ ВИРУСОВ. ДОСТИЖЕНИЯ ОТЕЧЕСТВЕННОЙ ВИРУСОЛОГИИ».

    Вирусология – наука изучающая природу и происхождение вирусов, заболевания ими вызываемые. Общая вирусология изучает природу и происхождение вирусов, строение и химический состав, устойчивость к физико-химическим факторам, ее предметом является также взаимодействие вируса и клетки, генетику вирусов, особенности формирования иммунитета против вирусов, общих принципов диагностики и профилактики. Она изучает те же вопросы, что и общая вирусология. Вирусы как объекты имеют единицы измерения. Период – люди не знали сущности заболевания, только описывали его. В 18 столетии врач Дженер разработал против оспы вакцину, с помощью которой ее лечили. Далее заслуга Пастера, в его время существовало бешенство. Он доказал, что бешенство передается путем покуса. На питательных средах ничего не вырастало. После работ Пастера было выяснено, что заразные болезни вызываются мельчайшими организмами (микробами). Не один из методов бактериальных исследований не позволял выделить микробов, с присутствием которых связаны оспа, ящур, чума.

    Пастеру не приходила в голову мысль, о существовании возбудителя, отличного по своей природе от микробов. Первый открытый вирус поражал табачные растения (табачная мозаика). В то время этот вирус приносил большой экономический урон. Ученые задались вопросом выяснить причину этого заболевания. Эта работа была поручена Д.И. Ивановскому.

    В результате наблюдений Д.И.Ивановский и В.В.Половцев впервые высказали предположение, что болезнь табака, описанная в 1886 году A.D.Mayer в Голландии под название мозаичной, представляет собой не одно, а два совершенно различных заболевания одного и того же растения: одно из них – рябуха, возбудителем которого является грибок, а другое неизвестного происхождения. Исследование мозаичной болезни табака Д.И.Ивановский продолжает в Никитинском ботаническом саду (под Ялтой) и ботанической лаборатории Академии наук и приходит к выводу, что мозаичная болезнь табака вызывается бактериями, проходящими через фильтры Шамберлана, которые, однако, не способны расти на искусственных субстратах. Возбудитель мозаичной болезни называется Ивановским то “фильтрующимися” бактериями, то микроорганизмами, так как сформулировать сразу существование особого мира вирусов было весьма трудно. Подчеркивая, что возбудитель мозаичной болезни табака не мог быть обнаружен в тканях больных растений с помощью микроскопа и не культивировался на искусственных питательных средах.

    Он основал вирусологию. Повышенный интерес к вирусологии был вызван тем, что вирусные болезни имеют ведущее значение. 75% болезней вызывается вирусами. Они наносят огромный экономический урон. После открытия Ивановского датский ученый Бейеринг повторил опыты Ивановского и подтвердил, что возбудитель мозаики проходит через фарфоровые фильтры и доказал, что это жидкий живой контагий. Дал ему название вирус. В 1903 году были открыты возбудители чумы свиней, инфекционной анемии. В 1915-1917 годах вирусы бактерий – бактериофаги, к концу 40-х годов было открыто более 40 вирусов, а за последние 40 лет стало известно более 500 вирусных болезней. Ученые задались целью получить вирусные агенты.

    В 1931 году предложили метод культивирования куриных эмбрионов. Этот метод отличается высокой чувствительностью, исключается заражение спонтанными вирусами. Наиболее быстрое развитие вирусологии началось после 1948 года. Эндерс предложил метод однослойных культур клеток и тканей.

    ВОПРОС №3 «ПРИНЦИПЫ СОВРЕМЕННОЙ КЛАССИФИКАЦИИ ВИРУСОВ, ОСНОВНЫЕ ГРУППЫ ВИРУСОВ».

    Современная классификация вирусов универсальна для вирусов позвоночных, беспозвоночных, растений и простейших. Она основана на фундаментальных свойствах вирионов, из которых ведущими являются признаки характеризующие нуклеиновую кислоту, морфологию, стратегию генома, АГ свойства. Фундаментальные свойства поставлены на 1 место, поскольку вирусы со сходными АГ свойствами обладают и сходным типом нуклеиновой кислоты, сходными морфологическими и биофизическими свойствами. Важным признаком для классификации, который учитывается нарду со структурными признаками, является стратегия вирусного генома, под которой понимают используемый вирусом способ репродукции, обусловленный особенностями его генетического материала. АГ и другие биологические свойства являются признаками, лежащими в основе формирования вида и имеющими значение в пределах рода. В основу современной классификации положены следующие основные критерии: 1) тип нуклеиновой кислоты (РНК или ДНК), ее структура (количество нитей); 2) наличие липопротеидной оболочки; 3) стратегия вирусного генома; 4) размер и морфология вириона, тип симметрии, число капсомеров; 5)феномены генетических взаимодействий; 6) круг восприимчивых хозяев; 7) патогенность, в том числе патологические изменения в клетках и образование внутриклеточных включений; 8) географическое распространение; 9) способ передачи; 10) АГ свойства. На основании перечисленных признаков вирусы делятся на семейства, подсемейства, роды и типы. Для упорядочения наименований вирусов выработан ряд правил. Название семейств оканчивается на «viridae» «virinae» «virus». В названии допускаются привычные латинизированные обозначения, цифры и обозначения типов, сокращения, буквы и их сочетания.

    ВОПРОС №4 «ХИМИЧЕСКИ СОСТАВ И ФИЗИЧЕСКАЯ СТРУКТУРА ВИРУСОВ. ПОНЯТИЕ О ВИРИОНЕ, КАПСИДЕ, КАПСОМЕРЕ. ТИП СИММЕТРИИ.

    Вирусы состоят из фрагмента генетического материала, либо ДНК, либо РНК, составляющей сердцевину вируса, и окружающей эту сердцевину защитной белковой оболочкой, которую называют капсидом . Полностью сформированная инфекционная частица называется вирионом . У некоторых вирусов, таких, как вирусы герпеса или гриппа, есть еще и дополнительная липопротеидная оболочка , которая возникает из плазматической мембраны клетки-хозяина. В отличие от всех остальных организмов вирусы не имеют клеточного строения. Оболочка вирусов часто бывает построена из идентичных повторяющихся субъединиц – капсомеров. Из капсомеров образуются структуры с высокой степенью симметрии, способные кристаллизироваться. Это позволяет получить информацию об их строении как с помощью кристаллографических методов, основанных на применении рентгеновских лучей, так и с помощью электронной микроскопии. Как только в клетке-хозяине появляются субъединицы вируса, они сразу же проявляют способность к самосборке в целый вирус. Самосборка характерна и для многих других биологических структур, она имеет фундаментальное значение в биологических явлениях. Непременным компонентом вирусной частицы является какая-либо одна из двух нуклеиновых кислот, белок и зольные элементы. Эти три компонента являются общими для всех без исключения вирусов, тогда как остальные липиды и углеводы – входят в состав далеко не всех вирусов. Вирусы, в состав которых наряду с белком и нуклеиновой кислотой входят также липоиды и углеводы, как правило, принадлежат к группе сложно устроенных вирусов. Кроме белков, входящих в состав нуклеопротеидного «ядра», вирионы могут содержать еще вирус – специфические белки, которые были встроены в плазматические мембраны зараженных клеток и покрывают вирусную частицу, когда она выходит из клетки или «отпочковывается» от ее поверхности. Кроме того, у некоторых вирусов с оболочкой существует субмембранный матриксный белок между оболочкой и нуклеокапсидом. Вторую большую группу вирус-специфических белков составляют некапсидные вирусные белки. Они в основном имеют отношение к синтезу нуклеиновых кислот вириона. Четверым компонентом, обнаруживаемым иногда в очищенных вирусных препаратах, являются углеводы (в количестве, превышающем содержание сахара в нуклеиновой кислоте). В составе элементарных телец вируса гриппа и классической чумы птиц находятся до 17 % углеводов.

    По морфологическим признакам все вирусы подразделяются на:

    1)Палочковидные

    2)Шаровидные

    3)Кубоидальные

    4)Булавовидные

    5)Нитевидные

    Основными являются первые 4, нитевидные промежуточной формой.

    Понятие о типе симметрии.

    В зависимости т расположения капсомеров в белковой оболочке все вирусы подрываются на 3 группы:

    1)Спиральный тип

    2)Кубический тип

    3)Комбинированный

    1 – имеют вирусы, наделенный крупными размерами и обладающие высоким полиморфизмом. Капсомеры у них уложены в виде спирали с разным диаметром и таким образом чаще всего шарообразную оболочку, иногда они покрыты второй оболочкой (пеплосом). Нуклеиновая кислота скручена в виде пружины и располагается витками в виде белковых молекул.

    2 – у таких вирусов капсомеры располагаются в виде правильного многогранника (икосаэдра). Она скручена в виде клубка и находится в центре.

    У большинства вирусов капсомеры имеют форму 5-6 гранных призм.

    3 – этот тип симметрии характерен для бактериофагов. Все разновидности бактериофагов имеют головку по типу кубической симметрии, а хвостовой отросток со спиральным строением. Головка с поверхности покрыта белковой оболочкой, которая состоит из однородных белковых субъединиц. В полости головки располагается 1 из нуклеиновых кислот. Хвостовой конец состоит из полого стержня. Заканчивается шестиугольной пластинкой на конце. Хвостовой конец окружен воротничком, к которому прикреплен чехол покрывающей весь стержень.

    Химический состав вирусов.

    Методы очистки и концентрации вирусов путем высаливания, адсорбции, ультрафильтрации, осаждения позволили изучить химический состав. В составе вирусов имеются белки и одна из нуклеиновых кислот. Вирусы крупных и средних размеров содержат еще и липиды, углеводы и некоторые другие, органические и неорганические соединения.

    Большая часть белка и связанных с ним липидов и углеводов – оболочка. Вещества, входящие в состав вирусов имеют особенности, как в химическом, так и биологическом отношении.

    Белки – основная часть (20 АК).

    Значение вирусных белков – защитная функция (формирование капсиды).

    В состав вируса входят ферменты, имеющие белковую природу (адсорбция, адресная функция), наделены иммунными свойствами (обуславливают антигенные свойства).

    Особенности вирусных белков:

    1.Обладают свойством самосборки (по мере их накопления вирусные белки агрегируются).

    2.Обладают избирательной чувствительностью по отношению физических и химических факторов.

    3.Не подвергаются гидролизу под действием протеолитических ферментов.

    Белки от 50-75% массы вирионов составляют.

    Зараженные вирусным геном клетки кодируют синтез 2 групп белка:

    Структурные===, ===несруктурные===

    1.Струкурные – количество в составе вириона, в зависимости от сложности организации вириона. Структурные белки 2 группы делятся: а. капсидные б. суперкапсидные (пепломеры).

    Сложноорганизованные вирусы содержат оба типа белков. У ряда таких вирусов в составе капсида имеются ферменты осуществляют транскрипцию, репликацию.

    Суперкапсидные белки формируют шипы (до7-10 нм). Основная функция гликопротеидов – взаимодействие со специфическими рецепторами клетки. Другая функция – участие в синтезе клеточной и вирусной мембран.

    «Адресная функция» – вырабатывают в процессе эволюция, это поиск чувствительной клетки.

    Реализуется путем наличия специальных белков, которые узнают специальные рецепторы на клетке.

    Неструктурные (временные) вирусные белки – предшественники вирусных белков, ферменты синтеза ДНК/РНК полимеразы, обеспечивают транскрипцию и репликацию вирусного генома, белки регуляторы, полимеразы.

    Липиды – в сложных вирусах находятся в составе суперкапсида (от 15 до 35 процентов). Липидный компонент стабилизирует структуру вирусной частицы.

    Углеводы – до 10-13%. Входят в состав гликопротеидов. Играют существенную роль в структуре и функции белка.

    Нуклеиновые кислоты – постоянная составная часть. Сложные полимерные соединения. Выделены Мишером в 1869 году из лейкоцитов. В отличие от бактерий содержат только 1 аминокислоту. В структурном плане нуклеиновые кислоты бывают различными.

    1.Линейная двуспиральная с открытыми концами.

    2.Линейная двуспиральная с замкнутыми концами.

    3.Линейная односпиральная.

    4.Кольцевая односпиральная.

    1.Линейная односпиральная.

    2.Линейная фрагментированная.

    3.Кольцевая односпиральная.

    5.Линейная двуспиральная фрагментированная.

    ВОПРОС №5 «УСТОЙЧИВОСТЬ ВИРУСОВ К ФИЗИКО-ХИМИЧЕСКИМ ФАКТОРАМ. ПРАКТИЧЕСКОЕ ИСПОЛЬОВАНИЕ ЭТИХ СВОЙСТВ».

    Разные группы вирусов обладают неодинаковой устойчивостью во внешней среде. Наименее устойчивы вирусы, имеющие липопротеидные оболочки, наиболее устойчивы изометрические вирусы. Так ортомиксовирусы и парамиксовирусы инактивируются на поверхностях за несколько часов, тогда как вирусы полиомиелита, адено-, реовирусы сохраняют инфекционную активность несколько дней. Однако из этого правила имеются и исключения. Так, вирус оспы устойчив к высыханию и сохраняется в экскретах многие недели и месяцы. Вирус гепатита В устойчив к действию неблагоприятных внешних факторов и сохраняет свою активность в сыворотке даже при кратковременном кипячении. Чувствительность вирусов к ультрафиолетовому и рентгеновскому облучению зависит преимущественно от размеров их генома. Чувствительность вирусов к формальдегиду и другим химическим веществам, инактивирующим генетический материал, зависит от многих условий, среди которых следует назвать плотность упаковки нуклеиновой кислоты в белковый футляр, размеры генома, наличие или отсутствие внешних оболочек. Вирусы, имеющие липопротеидные оболочки, чувствительны к эфиру, хлороформу и детергентам, в то время как просто устроенные изометрические и палочковидные вирусы устойчивы к их действию. Важной особенность вирусов является чувствительность к РН. Есть вирусы, устойчивые к кислым значениям РН (2,2-3,0), например вирусы, вызывающие кишечные инфекции и проникающие в организм алиментарным путем. Однако большинство вирусов инактивируется при кислых и щелочных значениях РН.

    ВОПРОС №6 «ВИРУСНЫЕ НУКЛЕИНОВЫЕ КИСЛОТЫ. ИХ РАЗНОВИДНОСТИ, СТРУКТУРЫ, ОСНОВНЫЕ СВОЙСТВА.

    Молекулы вирусных ДНК могут быть линейными или кольцевыми, двухцепочечными или одноцепочечными по всей своей длине или же одно цепочечными только на концах. Большинство нуклеотидных последовательностей в вирусном геноме встречается лишь по одному разу, однако на концах могут находиться повторяющиеся, или избыточные участки. Структуре концевых участков вирусных ДНК существуют также большие различия в величине генома. Вирусов животных ДНК почти не подвергается модификациям. Например, хотя ДНК клеток-хозяев и содержит много метилированных оснований, у вирусов имеется в лучшем случае лишь несколько метильных групп на геном. Размеры вирионов РНК – вирусов сильно варьируют – от 7.106 дальтон у пикорнавирусов до >2.108 дальтон у ретровирусов; однако размеры РНК и, следовательно, объем содержащейся в ней информации различаются в значительно меньшей степени. РНК пикорнавирусов – вероятно, наименьшая из известных – содержит около 7500 нуклеотидов, а РНК парамиксовирусов – едва ли не самая крупная – почти 15000 нуклеотидов. По-видимому, всем независимо реплицирующимся. Нуклеиновые кислоты – постоянная составная часть. Сложные полимерные соединения. Выделены Мишером в 1869 году из лейкоцитов. В отличие от бактерий содержат только 1 аминокислоту. В структурном плане нуклеиновые кислоты бывают различными.

    1.Линейная односпиральная.2.Линейная фрагментированная.3.Кольцевая односпиральная.5.Линейная двуспиральная фрагментированная.

    ВОПРОС №7 «БЕЛКИ ВИРУСОВ, ИХ ОСОБЕННОСТИ (ХАРАКТЕРИСТИКА СВОЙСТВ НЕЙРАМИНИДАЗ И АНТИГЕНОВ МИКСОВИРУСОВ)».

    Представляют собой чрезвычайно разнородный класс биологических макромолекул. Обязательными компонентами белков являются АК. Альфа-АК – это сравнительно простые органические молекулы. Молекулярная масса АК лежит в пределах 90-250Д. В состав полипептида может входить от 15 до 2000 АК. Наиболее часто встречаются полипептиды с массой от 20 до 700 кД, состоящие из 100-400 АК. Вирусные белки – белки, кодируемые геномом вируса, – синтезируются в зараженной клетке. Исходя из функции локализации, структуры и регуляции синтеза, вирусные белки делят на структурные и неструктурыные; ферменты, предшественники, гистоноподобные капсидные белки,; мембранные, трансмембранные.

    Структурные белки – все белки, входящие в состав зрелых внеклеточных вирионов. Они в вирионе выполняют ряд функций: 1) защита НК от внешних повреждающих воздействий; 2) взаимодействие с мембраной чувствительных клеток в ходе первого этапа их заражения; 3) взаимодействие с вирусной НК в ходе и после ее упаковки в капсид; 4) взаимодействие между собой в ходе самосборки капсида; 5) организация проникновения вируса в чувствительную клетку. Эти 5 функции присущи структурными белкам всех без исключения вирусов. Все функции могут реализоваться одним белком. 6) способность к разрушению в ходе освобождения НК; 7) организация выхода из зараженной клетки в ходе формирования вириона. 8) организация «плавления» и слияния клеточных мембран.

    Также белки могут обладать свойствами катализировать те или иные биохимические реакции: 9) РНК-зависимая РНК-полимеразная активность. Эту функцию выполняют структурные белки всех вирусов, в вирионах которых содержится РНК, не играющая роль мРНК; 10) РНК-зависимая ДНК-полимеразная активность – эту функцию выполняют специальные белки ретровирусов, именуемые ревертазами; 11) защита и стабилизация вирусной НК после ее выхода из капсида в зараженной клетке.

    В зависимости от расположения того или иного белка в вирионе выделяют группы белков: А) Капсидные белки – в вирионах сложно организованных вирусов эти белки могут выполнить только 2-3 функции – защита НК, способность к самосборке и разрушению в ходе освобождения НК. В вирионах простых вирусов их функции обычно более многообразны. Б) Белки вирусной суперкапсидной оболочки – их роль сводится в основном к организации почкования вирионов, способности к самосборке, взаимодействию с мембраной чувствительных клеток, организации проникновения в чувствительную клетку. В) Матриксные белки – белки промежуточного слоя вирионов, расположенного сразу под суперкапсидной оболочкой некоторых вирусов. Их основные функции: организация почкования, стабилизация структуры вириона за счет гидрофобных взаимодействий, посредничество в осуществлении связи суперкапсидных белков с капсидными. Г) Белки вирусных сердцевин – представлены в основном ферментами. Вирусы, имеющие многослойные капсиды, могут иметь и защитную роль. Д) Белки, ассоциированные с НК самого внутреннего слоя вирионов.

    Неструктурные белки – все белки, кодируемые вирусным геномом, но не входящие в вирион. Они изучены хуже, что связано с несравненно большими трудностями, которые возникают при их идентификации и выделении по сравнению со структурными белками. Неструктурные белки в зависимости от их функции делят на 5 групп: 1) Регуляторы экспрессии вирусного генома – непосредственно воздействуют на вирусную НК, препятствуя синтезу других вирусных белков, или, наоборот, запуская их синтез. 2) Предшественники вирусных белков – являются предшественниками других вирусных белков, которые образуются из них в результате сложных биохимических процессов. 3) Нефункциональные пептиды – образуются в зараженной клетке. 4) Ингибиторы клеточного биосинтеза и индукторы разрушения клеток – сюда относятся белки, которые разрушают клеточные ДНК и мРНК, модифицируют клеточные ферменты, придавая им вирусоспецифическую активность. 5) Вирусные ферменты – ферменты, кодируемые вирусным геномом, но не входящие в состав вирионов.

    ВОПРОС №8 «ПЕРИОДЫ И ЭТАПЫ РЕПРОДУКЦИИ ВИРУСОВ. ТИПЫ ВЗАИМОДЕЙСТВИЯ».

    Взаимодействие вирусов с клетками хозяев и репродукция вирусов.

    Вирусы проходят в клетке сложный цикл развития. Морфогенез вирусов представляет собой основной этап этого развития и состоит из формообразовательных процессов приводящих к образованию вириона как заключению формы развития вируса. Онтогенез и репродукция развития вируса регулируется геномом.

    В 50-х годах установлено, что размножение вируса происходит путем репродукции, т.е. воспроизведение нуклеиновых и белков с последующей сборкой вириона. Эти процессы происходят в разных частях клетки, например в ядре и цитоплазме (дизъюнктивный способ репродукции). Вирусная репродукция представляет собой уникальную форму, выражения чужеродной инфекции в клетках человека, животных, насекомых и бактерий.

    Морфогенез регулируется с помощью морфогенетических генов. Существует прямопропорциональная зависимость между сложностью ультраструктуры вириона и его морфогенеза. Чем сложнее организация вириона, тем больший путь развития проходит вирус. Весь этот процесс осуществляется с помощью специальных ферментов. Т.к. вирусы не имеют собственного метаболизма то нуждается в ферментах. Однако у вирусов обнаружено свыше 10 ферментов, разных по происхождению и функциональному значению.

    По происхождению: вирионные, вирус-индуцированные, клеточные, модифицированные вирусами. Первые входят в состав многих ДНК и РНК содержащих вирусов. ДНК-зависимая РНК-полимераза, протеинкиназа, АТФ-аза, рибонуклеаза, РНК-зависимая РНК-полимераза, экзонуклеаза и другие.

    К вирионным формам относятся: гемоглютиннин и нейраминидаза, лизоцим.

    Вирус-индуцирующие – это ферменты, структура которых закодирована в геноме, а синтез происходит на рибосоме хозяина – ранние вирионные белки.

    Клеточные – включают ферменты клетки хозяина, не являются вирусоспецифическими, однако при взаимодействии с вирусами активность может модифицироваться.

    По функциональному значению ферменты делятся на 2 группы:

    — Участвующие в репликации и транскрипции;

    — Нейраминидаза, лизоцим и АТФ-аза, которые способствуют проникновению вируса в клетку и выходу зрелых вирионов из клетки.

    Репродукция вирионов характеризуется сменой стадий:

    Согласно современным данным различают 3 основных периода в цикле репродукции:

    1.Начальный (подготовительный)2.Средний (латентный)3.Конечный (заключительный)

    Каждый из периодов включает ряд этапов:

    Первый этап

    1.Адсорбция вируса на клетке.

    2.Проникновение в клетку.

    3.Депротеинизация (высвобождение нуклеиновой кислоты).

    Второй этап

    1.Биосинтез ранних вирусных белков

    2.Биосинтез вирусных компонентов

    Третий этап

    1.Формирование зрелых вирионов

    2.Выход зрелых вирионов из клетки.

    1.Адсорбция – физико-химический процесс, является следствием разности зарядов. Эта стадия обратима на ее исход оказывает влияние кислотность среды, температура и другие процессы.

    Основную роль в адсорбции вируса играет взаимодействие вируса с комплементарными рецепторами клетки. По химической природе они относятся к мукополипротейдам. На степень скорости адсорбции влияют гормоны действующие на рецепторы. Адсорбция вируса может и не наступить, что связано с различной чувствительностью клеток к вирусам. Чувствительность, в свою очередь определяется:

    Наличием в клеточной оболочке и цитоплазме ферментов, способных разрушить оболочку и освободить нуклеиновую кислоту.

    Наличием ферментов, материала, обеспечивающих синтез вирусных компонентов.

    2.Проникновение вируса в клетку:

    Вирус проникает 3 путями – путем непосредственного впрыскивания (характерно для фагов); путем разрушения клеточной оболочки (путь сплавления – характерно для вирусов растений); путем пиноцитоза (характерен для вирусов позвоночных).

    3.Репродукция ДНК-содержащих вирусов.

    4.Выход вириона из клетки:

    1.Просачиваются через оболочку клетки и одеваются суперкапсидом, в состав в состав которого включаются компоненты клетки: липиды, полисахариды. В данном случае клетка сохраняет свою жизнедеятельность затем погибает. В некоторых случаях в процессе репродукции процессы могут происходить в течение нескольких лет, но жизнедеятельность сохраняется. При этом способе зрелые вирионы из клетки выходят постепенно и относительно длительно. Этот путь характерен для сложных вирусов, имеющих двойную оболочку.

    Аномальные вирусы.

    В процессе репродукции образуются различные аномальные вирусы. Усилиями академика Жданова в последние годы были открыты псевдовирусы, состоящие из РНК-вируса и белков клетки, образующих капсид. Они обладают инфекционными свойствами, но в силу особенности капсида не поддаются действию антител, образующих ответ на этот вирус.

    Явление образования таких вирусов объясняется длительным вирусоносительством при наличии в организме специфических АТ.

    Причинами формирования таких вирионов являются:

    1.Высокая множественность, в результате чего клетка не в состоянии обеспечить все потомство энергетическим материалом.

    2.Действие интерферона – он влияет на синтез ДНК и РНК вирусов.

    ВОПРОС №9 «ОСОБЕННОСТИ БИОСИНТЕЗА ДНК-СОДЕРЖАЩИХ ВИРУСОВ. ПОНЯТИЕ ТРАНСКРИПЦИИ И ТРАНСЛЯЦИИ».

    Транскрипция – переписывание ДНК на РНК – осуществляется с помощью фермента РНК-полимеразы, продуктами является биосинтез и-РНК. ДНК-содержащие вирусы, репродукция которых происходит в ядре, используют для транскрипции клеточную полимеразу. РНК-содержащие вирусы ф-ю и-РНК выолняет сам геном. У некоторых РНК-содержащих вирусов передача генетической информации осуществляется по формуле РНК-РНК-белок. К этой группе вирусов относятся – пикорновирусы, корновирусы.

    Синтез белка происходит в результате трансляции в РНК.

    Под воздействием ферментов у ДНК-содержащих вирусов осуществляется синтез и-РНК, и-РНК посылается на рибосомы чувствительной клетки. На рибосомах клетки начинается синтез ранних вирионных белков (наделены свойствами – ферментами, блокируют клеточный метаболизм).

    Ранние вирионные белки дают начало образованию ранних вирионных кислот.

    По мере накопления ранних вирионных белков они блокируют себя и процесс перестраивается на рибосомном аппарате. Идет сборка вирионов и вновь сформировавшиеся вирионы покидают клетку-мать.

    ВОПРОС №10 «ТИПЫ ВЗАИМОДЕЙСТВИЯ, ОСНОВНЫЕ ИСХОДЫ ВЗАИМОДЕЙСТВИЯ ВИРУСА С КЛЕТКОЙ».

    1)Продуктивное взаимодействие – когда вирусы размножаясь в клетке образуют новое поколение 2)Абортивное – когда циклы репродукции прерывается на какой либо стадии. 3)Литическая реакция – когда после образования вируса клетка гибнет. 4)Латентная реакция – когда зараженная клетка длительно сохраняет свою жизнеспособность. 5)Интеграция – когда происходит объединение геномов вирусов и клеток. При этом происходит репродукция в клетках геномов, подчиняется общей регуляции. Репродукция вирусов вызывает в пораженных клетках патологические изменения выражающиеся функциональными и морфологическими нарушениями клеток. Возможные исходы процессов взаимодействия различных вирусов и клеток можно / на 5 типов: 1)Дегенерация клеток – приводит к их гибели. При этом клетка приобретает неправильную округлую форму, округляются, становятся более плотные, в цитоплазме появляется зернистость, сморщивание и фрагментация ядер. 2.Образование симпластов – это многоядерные. скопления вне клеточного. вещества. 3)Трансформация клеток – т.е. образование очагов беспорядочного трехмерного роста. Клетки в этих очагах приобретают новые наследственные свойства, непрерывно /, нагромождаясь друг на друга(опухоли). 4. Обр. внеклеточных включений, которые являются продуктами реакции клеток на вирусную частицу. 5)Латентная инфекция- это своеобразное сост. равновесия между вирусом и клеткой., когда инфекция не проявляется каким-либо признаком. Наблюдается незначительная продукция вируса, без повреждения клеток.

    ВОПРОС №11 «ФАЗЫ ВЗАИМОДЕЙСТВИЯ РНК СОДЕРЖАЩЕГО ВИРУСА С КЛЕТКОЙ».

    См вопрос №8

    ВОПРОС №12 «ПАТОГЕНЕЗ ВИРУСНЫХ ИНФЕКЦИЙ

    Тропизм – склонность вируса к тому или иному вороту инфекции. При респираторных инфекциях – вирус локализуется в носоглотке, трахее и легких; при энтеровирусных – в кале; при нейротропных – в ГМ или СМ; при дермотропных – в коже.

    Патогенез вирусных инфекций.

    Под патогенезом понимают совокупность процессов, вызывающих заболевание, его развитие и исход.

    Патогенез определяется:

    1.Тропизмом вируса

    2.Количеством инфекционных частиц

    3.Реакцией клетки на инфекцию.

    4.Реакция организма на изменение клеток и тканей.

    5.Скоростью репродукции.

    В основе тропизма вирусов лежит чувствительность к вирусу определенных клеток.

    Патогенез обусловлен основными механизмами взаимодействия вирусов с клетками:

    Атрофия или дистрофия (ЦПД)

    Образование телец включений

    Образование симпластов и синцитиев

    Трансформация

    Латентная (хроническая) инфекция.

    Патогенез на клеточном уровне – сюда входит ЦПД (видимые морфологические изменения клеток под воздействием того или иного вирусного агента). Характер ЦПД различен и зависит от:

    1.Вида клетки

    2.Биохимических свойств вируса

    3.Заражающей дозы

    Характер ЦПД оценивается по 4-х бальной системе крестовой и учитываются изменения, когда используются культуры клеток для титрования (т.е.).

    Патогенез на организменном уровне.

    Состояние инфекции как всякого биологического процесса динамично, динамку взаимодействия обычно называют инфекционным процессом. С одной стороны инфекционный процесс включает: внедрение, размножение и распространение возбудителя в организме, а также патогенное действие, а с другой стороны реакцию организма на это действие.

    Патогенное действие возбудителя может быть неодинаковым. Оно проявляется в форме инфекционной болезни различной тяжести, в другом без ярко выраженных клинических признаков в третьих проявляется лишь изменениями, выявленными вирусологическими, биохимическими, иммунологическими методами. Это зависит от:

    Количества и качества возбудителя, проникшего в восприимчивый организм, условий внутренней и внешней среды, определяющих резистентность животного и характеризуются взаимодействием микро и макроорганизмов. По характеру взаимодействия возбудителя болезни и организма выделяют 3 формы:

    1.инфекционная болезнь – это инфекционный процесс, характеризуется определенными клиническими признаками, а также нарушениями, функциональными расстройствами и морфологическими повреждениями тканей.

    2.Микробоносительство – иммунологическая субинфекция. Дифференцированный подход к различным формам инфекции дает возможность правильно вести диагностику инфекции выявлять зараженных животных в неблагополучном стаде. Патогенез любой инфекционной болезни определяется специальным действием возбудителя и ответными реакциями организма, зависящими от условий, в которых происходит взаимодействие микро и макроорганизма. При этом немаловажное значение имеют пути проникновения и распределения возбудителя. Ворота возбудителя: кожа, слизистые, мочеполовая система, плацента.

    Каждый вид возбудителя эволюционно приспособился к таким путям внедрения, которое обеспечивает благоприятные условия для размножения и распространения – входные ворота для каждой инфекции характеризуется специфичностью. Чтобы проводить профилактику необходимо учитывать специфичность ворот инфекции. Например, при ИНАН возбудитель проникает через кожу при укусе насекомых. При ящуре основной путь алиментарный, при бешенстве – через покус.

    Классификация вирусных инфекций.

    Различают автономные и интегрированные инфекции. Автономные – при этом вирусный геном реплицируется независимо от клеточного генома. Автономная инфекция характерна для большинства вирусов.

    Интегрированные инфекции – вирусный геном включается в состав клеточного генома, т.е. интегрируются в клеточный геном и реплицируются вместе с ним. При этом вирусный геном реплицируется и функционирует как составная часть клеточного генома. Интегрировать может как полный геном так и часть. При интегрированных инфекциях нет ни сборки вирусных частиц ни выхода.

    Автономная инфекция – клетка иногда приобретает способность к неограниченному делению в результате нарушения регулирующих механизмов, контролирующих деление. Это чаще наблюдается при онкогенных инфекциях.

    Продуктивная и абортивная инфекции:

    1.Продуктивная – завершается выходом инфекционного потомства.

    2.Абортивная – инфекционного потомства не образуется или его мало.

    Формы течения – как и продуктивная, так и абортивная могут протекать в острой и хронической форме. Острая инфекция – это инфекция, в результате которой клетка либо выздоравливает либо погибает. Острая инфекция на клеточном уровне может быть цитолитической (когда происходит гибель клетки).

    Хроническая инфекция – это инфекция, при которой клетка продолжает продуцировать вирусные частицы в течение длительного времени и предает эту способность дочерним клеткам. Чаще хроническую форму приобретает абортивная инфекция т.к. вирусный материал накапливается и передается дочерней клетке.

    Смешенная инфекция – клетка заражается двумя или несколькими разными вирусами, в результате чего в клетке могут совмещаться два и более инфекционных процесса. Возможно несколько вариантов взаимодействия вируса в процессе смешанной инфекции:

    1.Интерференция – один вирус подавляет действие другого.

    2.Комплементация (экзальтация) – один вирус усиляет действие другого.

    Классификация вирусных инфекций на организменном уровне.

    В основу классификации положено:

    1.Генерализация вируса

    2.Продолжительность инфекции

    3.Проявление клинических симптомов

    4.Выделение вирусов в окружающую среду

    Одна из форм может переходить в другую (например, очаговая в генерализованную, острая в хроническую).

    Очаговая инфекция.

    Вирус действует вблизи входных ворот инфекции, в связи с локальной репродукцией. Они имеют более короткий скрытый период по сравнению с генерализованными.

    Генерализованные инфекции.

    После ограниченного периода репродукции в первичных очагах происходит генерализация инфекций – вирусы проникают в другие системы, например при ящуре, полиомиелите, оспе.

    Острая инфекция.

    Длится непродолжительный период и протекает с выделением в окружающую среду. Заканчивается гибелью или выздоровлением.

    Персистентная инфекция.

    При продолжительном взаимодействии вируса с организмом. Она может быть латентная, хроническая, медленная.

    Латентная инфекция – не сопровождается выделением вируса в окружающую среду, при определенных условиях может переходить в острую и хроническую.

    При гриппе, сепсисе, СПИДе и др.

    Хроническая инфекция.

    Это длительно текущий процесс. Характеризуется периодами ремиссии (аденовирус, герпес).

    Медленные инфекции – своеобразное взаимодействие вируса с фагом и характеризуется длительными инкубационными периодами.

    Источники инфекции.

    При изучении любого инфекционного заболевания важно знать источник, место постоянного обитания и размножения, пути распространения, место и сроки сохранения, возникновения во внешней среде, способы передачи от больных к здоровым.

    Естественная среда – живой организм, здесь он находит все условия существования. Длительность пребывания вирусов колеблется в значительных пределах и зависит от биологических свойств, реактивности организма. От условий патогенеза. Источники инфекции – только зараженные организмы. Они играют роль лишь в процессе передачи. Большинство животных выделяют вирусы с экскретами, секретами, кровью, истечениями, мокротой. При большинстве вирусных инфекций в основе патогенеза лежит вирусемия (ящур, чума и др). При этих заболеваниях вирус выделяется всеми возможными путями. При хроническом течении вирусовыделение менее интенсивно, но может быть длительным. При вирусных заболеваниях локализация ограничивается одним путем: пневмонии – с каплями мокроты. Самое интенсивное выделение вируса во внешнюю среду наблюдается в острый период заболевания, однако при ряде заболеваний и в инкубационный период. Бессимптомные инфекции протекают при вакцинировании живыми вакцинами.

    ВОПРОС №13 «ПРАВИЛА ВЗЯТИЯ ПАТМАТЕРИАЛА ОТ БОЛЬНЫХ И ПАВШИХ ЖИВОТНЫХ ПРИ ПОДОЗРЕНИИ НА ВИРУСНЫЕ БОЛЕЗНИ. ТРАНСПОРТИРОВКА И ПОДГОТОВКА ЕГО ДЛЯ ВИРУСОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ.

    Материал для исследований от заболевших, павших или вынужденно убитых животных следует брать как можно быстрее после появления четких признаков болезни или не позднее 2-3 часов после клинической смерти или убоя. Это связано с тем, что сразу после заболевания или в первые 1-2 дня значительно ослабевает барьерная роль кишечника, что наряду с повышенной проницаемостью кровеносных сосудов способствует диссеминации кишечной флоры. Кроме того, по мере продолжения и даже углубления инфекционного процесса количество вируса может уменьшаться в результате воздействия защитных механизмов организма. При взятии материала для выделения вируса следует исходить из патогенеза изучаемой инфекции (входные ворота, пути распространения вируса в организме, места его размножения и пути выделения). При респираторных инфекциях для выделения вирусов берут носоглоточные смывы, мазки из носа и глотки; при энтеровирусных – кал; при дермотропных – свежие поражения кожи. Материалов для выделения вируса могут служить различные экскреты и секреты, кусочки органов, кровь, лимфа. Кровь берут из яремной вены, у свиней – из кончика хвоста или уха. Смывы с конъюнктивы, со слизистой носа, с задней стенки глотки, прямой кишки и клоаки у птиц берут стерильными ватными тампонами и погружают их в пенициллиновые флаконы. При взятии материала из носоглотки можно пользоваться прибором, сконструированным Томасом и Скотом. Вытекающую изо рта слюну можно собрать прямо в пробирку. Мочу собирают при помощи катетера в стерильную посуду. Фекалии берут из прямой кишки шпателем или палочкой и помещают в стерильную пробирку. Везикулярную жидкость можно собирать шприцем или пастеровской пипеткой в стерильную пробирку. Стенки афт, корочки с поверхности кожи снимают пинцетом. После смерти животного важно как можно быстрее взять кусочки органов, т.к. при многих вирусных инфекциях наблюдается феномен посмертной аутостерилизации, в результате чего вирус м\б вообще не обнаружен или его количество окажется очень малым. Далее патматериал помещают в низкие температуры (сухой лед+спирт; снег+соль) или глицерин на ИХН. Патматериал должен быть снабжен надежной и четкой этикеткой. Нужно написать какой материал и от какого животного получен. На термос с пробами ПМ навешивают бирку из картона или фанеры на которой указывают хозяйство, вид животного, вид материала, дату. Термос должен быть опечатан и доставлен нарочным. Доставленные в лабораторию пробы рекомендуется немедленно использовать для выделения вируса. В лаборатории полученный патматериал освобождают от консерванта, оттаивают, отмывают от глицерина, взвешивают и измеряют. Часть берут на исследование, часть в холодильник. Подготовку органов и тканей проводят так: вирус высвобождают из клеток органов и тканей – материал тщательно измельчают и растирают в ступке со стерильным кварцевым песком. Из растертого материала обычно готовят 10% суспензию на Хенксе или фосфатном буфере. Суспензию центрифугируют при 1500-3000 об\мин, надосадочную жидкость отсасывают и освобождают от микрофлоры обрабатывая антибиотиками (пенициллин, нистатин). Проводят экспозицию суспензии с АБ не менее 30-60 минут при комнатной температуре, затем материал подвергают бактериологическому контролю путем посева на МПА, МПБ, МППБ, среду Сабуро. Суспензию хранят при минус 20- минус 70 С.

    ВОПРОС №14 «МЕТОДЫ КОНСЕРВИРОВАНИЯ ВИРУСОВ И ИХ ПРАКТИЧЕСКОЕ ЗНАЧЕНИЕ».

    Применяют следующие методы консервации вирусов:

    1) при хранении вирусного материала (кусочки органов или тканей) часто используют глицерин (50%-ный раствор на ИХН), который обладает бактериостатическим действием и в то же время защищает вирусы. При этом можно хранить несколько месяцев при 4С.

    2) чаще всего хранят вирусы в холодильниках, обеспечивающих температуру -20, -30, -70С. При этой температуре некоторые вирусы без добавки защитных веществ сравнительно быстро теряют инфекционность. Хорошее защитное действие при замораживании и хранении вирусов оказывает добавка: инактивированной сыворотки крови или обезжиренного молока или 0,5-1,5% желатина.

    3) Быстрая заморозка до минус 196С жидким азотом. Вирусы, чувствительные к низким значениям рН, следует замораживать в жидкостях, не содержащих однозамещенных фосфатов.

    4) Лиофилизация – высушивание в замороженном состояние в условиях вакуума – очень хороший способ консервирования. В лиофилизированном виде вирусы могут храниться несколько лет.

    ВОПРОС №15 «ПРАВИЛА РАБОТЫ В ВИРУСОЛОГИЧЕСКОЙ ЛАБОРАТОРИИ. ТЕХНИКА БЕЗОПАСТНОСТИ ПРИ РАБОТЕ С ВИРУСОСОДЕРЖАЩИМ МАТЕРИАЛОМ».

    Весь персонал лаборатории проходит инструктаж и обучение безопасным методам труда, обеспечивается спецодеждой, спецобувью, средствами санитарной защиты и защитными приспособлениями в соответствии с действующими нормами. Основные правила работы следующие: 1) вход в производственные помещения посторонних лиц, а также вход сотрудников в лабораторию без халата и сменной обуви категорически запрещен; 2) запрещено выходить за пределы лаборатории в халатах и спецобуви или надевать верхнюю одежду на халат, курить, есть и хранить в лаборатории продукты питания. В боксе работают в стерильном халате, маске, шапочке, при необходимости надевают резиновые перчатки и очки. Обязательно меняют обувь. 3) весь материал, поступающий в лабораторию на исследование, должен рассматриваться как инфицированный. С ним надо обращаться очень осторожно, при распаковке его банки следует обтирать снаружи дезинфицирующим раствором и ставить их на поднос или в кюветы. Рабочее место на столе покрывают несколькими слоями марли, увлажненной 5%-ным раствором хлорамина. При работе с пипетками пользуются резиновыми грушами. Пипетки, предметные и покровные стекла и другую посуду, бывшую в употреблении, обеззараживают, погружая в 5% хлорамин, фенол, лизол, серную кислоту. 4) по окончании работы рабочее место приводят в порядок и тщательно дезинфицируют. Вируссодержащий материал, необходимый для дальнейшей работы, ставят на хранение в холодильник и опечатывают. 5) руки тщательно промывают 5% хлорамином, перчатки снимают обеззараживают вторично, дезинфицируют и моют. При работе в вирусологической лаборатории сотрудники должны строго соблюдать методы и правила асептики и антисептики. Асептика – система мероприятий и приемов работы, предупреждающих попадание МО и вирусов из окружающей среды в организм человека, а также исследуемый материал. Она предусматривает использование стерильных инструментов и материалов, обработку рук сотрудников, соблюдение особых санитарно-гигиенических правил и приемов работы. Антисептика – комплекс мероприятий, направленных на уничтожение МО и вирусов, способных вызвать инфекционный процесс при попадании на поврежденные или интактные участки кожи и слизистых оболочек. В качестве антисептиков используют этиловый спирт (70%), спиртовой раствор йода, зеленка и другие. Дезинфекция – обеззараживание объектов окружающей среды путем уничтожения патогенных для человека и животных МО и вирусов физическими способами и с помощью химических веществ. Стерилизация – обеспложивание, полное уничтожение МО и вирусов в различных материалах. Ее проводят физическими и химическими методами.

    ВОПРОС №16 «СХЕМА ЛАБОРАТОРНОЙ ДИАГНОСТИКИ ВИРУСНЫХ ИНФЕКЦИЙ».

    Лабораторная диагностика – это система мер по обнаружению, индикации вируса. В нее входят: получение посланного патологического материла, исследование патологического материала методом быстрой диагностики, исследование длительными методами (ретроспективная диагностика, исследование парных сывороток в серореакциях).

    Лабораторные исследования. I.Индикация вируса в патологическом материале. 1.Обнаружение – световая микроскопия крупных вирусов (Poxviridae), электронная микроскопия. 2.Обнаружение телец-включений. (тельца Бабеша-Шенегри при бешенстве) 3.Обнаружение вирусных антигенов: серологические реакции. 4.Обнаружение вирусных НК (ДНК-зонды и ПЦР – полимеразно-цепная реакция). 5.Обнаружение активной формы вируса путем биопробы (лабораторные животные, куриные эмбрионы, культура клеток). 6.Обнаружение гемаглютининов у гемаглютинирующих вирусов (в настоящее время практически не используется по причине наличия более точных методов). II.Изоляция (выделение) вируса из патологического материала. Проводится не менее трех слепых пассажей, делается биопроба. А)Лабораторные животные (клиника, гибель, пат. изменения) Б)Куриные эмбрионы (гибель, пат. изменения, РГА) В)Культура клеток (ЦПД, РГАд, метод бляшек) III.Идентификация выделенного вируса – серологические реакции. IV.Доказательство этиологической роли. Иногда требуется доказать этиологическую роль выделенного вируса. Для этого используют парные сыворотки крови в серологических реакциях. В качестве АГ используют выделенный вирус, а в качестве АТ – парные сыворотки. Повышение титра антител во второй сыворотке в 4 и более раз свидетельствует о этиологической роли выделенного вируса.

    ВОПРОС №17 «КЛИНИКО-ЭПИЗООТОЛОГИЧЕСКАЯ ДИАГНОСТИКА ВИРУСНЫХ БОЛЕЗНЕЙ ЖИВОТНЫХ, СУЩНОСТЬ, ЗНАЧЕНИЕ».

    Клинико-эпизоотологическая или до-лабораторная диагностика – проводится в хозяйствах и позволяет поставить лишь предварительный диагноз, проводится распознавание на основе сбора, сопоставления анализа о больных животных (клинические симптомы болезни, Патологоанатомические изменения в органах). Сбор эпизоотологических данных очень важен, позволяет получить данные о том, как протекает заболевание, сведения о хозяйствах. Если хозяйства неблагополучны, то это лишний раз подтверждает диагноз. Клинический осмотр ориентирует ветеринара только на несколько видов болезней. Основное значение все же у лабораторной диагностики.

    ВОПРОС №18 «МЕТОДЫ ОБНАРУЖЕНИЯ ВИРУСА В ПАТМАТЕРИАЛЕ».

    I.Индикация вируса в патологическом материале. 1.Обнаружение – световая микроскопия крупных вирусов (Poxviridae), электронная микроскопия. 2.Обнаружение телец-включений (тельца Бабеша-Шенегри при бешенстве) 3.Обнаружение вирусных антигенов: серологические реакции. 4.Обнаружение вирусных НК (ДНК-зонды и ПЦР – полимеразно-цепная реакция). 5.Обнаружение активной формы вируса путем биопробы (лабораторные животные, куриные эмбрионы, культура клеток). 6.Обнаружение гемаглютининов у гемаглютинирующих вирусов (в настоящее время практически не используется по причине наличия более точных методов). Для идентификация выделенного вируса – серологические реакции. 1.РИФ – реакция иммунофлюорисценции. АГ + АТ меченные флюорохромом. Дают контакт 30 минут при 37 С, затем производят тщательный отмыв в ИХН. Метод обнаружения – флюоресцентное свечение под микроскопом. 2.ИФА – иммуно-ферментный анализ. АГ + АТ с ферментом. Контакт, отмыв, затем добавляют субстрат, который при контакте с АТ-ферментным комплексом дает цветную реакцию. 3.РСК – реакция связывания комплемента. АГ + АТ + комплемент. Контакт. Затем добавляют гем-систему (гемолизин + эритроциты барана). Контакт. Если гемолиза не происходит, значит АГ и АТ связали комплемент. Задержка гемолиза – реакция положительная. Если произошел гемолиз, значит комплемент связан гем-системой – реакция отрицательная. 4.РДП – реакция диффузной преципитиции. АГ + АТ (диффузия в агаровом геле). Метод обнаружения – образование контура преципитации. 5.РНГА – реакция непрямой гемаглютинации. Эритроциты нагружают АГ и при образовании комплекса АГ-АТ происходит агглютинация эритроцитов. 6.РТГА – реакция торможения гамаглютинации 7.РТГАд – реакция торможения гемадсорбции 8.РН – реакция нейтрализации. Вирус + АТ. Контакт. Ввод в чувствительную к вирусу систему. Метод обнаружения – нейтрализация инфекционной активности вируса.

    ВОПРОС №19 «ПРИНЦИП РЕТРОСПЕКТИВНОЙ ДИАГНОСТИКИ, ПЛЮСЫ И МИНУСЫ ЕЕ».

    Ретроспективная диагностика – преследует цель обнаружить динамику прироста АТ, основана на исследовании парных сывороток, которые берут дважды, в начале болезни и в конце. Их проверяют в одной из серореакций. Если прирост АТ в 4-5 раз больше – 100% постановка диагноза.

    Роль – метод позволяет достоверно поставить диагноз в большинстве случаев.

    Роль – длительность ретроспективной диагностики.

    ВОПРОС №20 «ВИРУС БОЛЕЗНИ АУЕСКИ».

    Болезнь Ауески (псевдобешенство, зудящая чума, бешеная чесотка, инфекционный бульбарный паралич) – остро протекающая болезнь всех видов сельскохозяйственных животных, пушных зверей и грызунов. Характеризуется признаками поражения головного и спинного мозга, сильным зудом и расчесами.

    Особый ущерб БА приносит в свиноводстве и пушном звероводстве. У пушных зверей это острая кормовая инфекция. Причиной является пища, которой нередко служат боенские отходы и субпродукты, полученные от больных животных или животных вирусоносителей.

    Клиника. Инкубационный период – 1,5 суток – 10-12 дней в зависимости от метода заражения, вирулентности вируса и устойчивости животного. Вирус пантропен.

    У свиней клиника протекает без признаков зуда. Тяжело болеют сосуны и отъемыши. Болезнь носит септический характер. Поросята обычно погибают через 4-12 часов. У поросят от 10 дней до 3-х месяцев первые признаки болезни – лихорадка (40-42), угнетение, слизистые истечения из носа. Позднее появляются признаки поражения ЦНС: беспокойство, манежные движения, потеря ориентации, судороги, прогиб спины, параличи глотки, гортани, конечностей, отек легких, слюнотечение. Болезнь длится от нескольких часов до 3-х дней. Летальность: 70-100%

    У свиноматок проявляется в виде гриппоподобного синдрома с выздоровлением через 3-4 дня.

    У КРС повышается температура до 42 С, прекращается жвачка, сильный зуд в областе ноздрей, губ, щек, отказ от корма, вялость, беспокойство, страх, учащенное дыхание, потливость, судороги жевательных и шейных мышц. Смерть наступает при нарастающей вялости через 1-2 суток. Выздоровления крайне редки.

    У плотоядных животных наблюдается отказ от корма, пугливость, беспокойство, сильный зуд. Иногда у собак и кошек проявляются признаки бешенства. Потом наступает паралич глотки. Смерть через 2-3 суток. Животные не являются источником вируса и не выделяют его, являясь экологическим тупиком.

    Заподозрить болезнь Ауески можно по характерным клиническим симптомам и патологоанатомическим изменениям (клинико-эпизоотологическая и патологоанатомическая диагностика).

    Материал для исследования: смывы из носовой полости и кровь (лучше парные сыворотки), от трупов – кусочки головного мозга, легких, печени, селезенки.

    Экспресс-метод – обнаружение вирусного антигена в РИФ. Вирусологический метод: а) выделение вируса на культуре клеток почек поросят: б) биопроба на кроликах (характерны зуд и расчесы в месте заражения).

    Идентификация: РИФ, РН.

    Ретроспективная диагностика: по приросту титра антител в парных выворотках.

    Следует дифференцировать болезнь Ауески от бешенства, чумы свиней, гриппа, рожи, отравления поваренной солью.

    Применятся живая вирусвакцина ВГНКИ, инактивированная культурная вакцина – иммунитет на 6-10 месяцев.За рубежом используются субъединичные и рекомбинантные вакцины.

    ВОПРОС №21 «ЗНАЧЕНИЕ И ОСОБЕННОСТИ ВИРУСНЫХ БЕЛКОВ».

    Смотри вопрос №7

    ВОПРОС №22 «ОБЩИЕ ПРИНЦИПЫ СЕРОЛОГИЧЕСКИХ РЕАКЦИЙ И ИХ ИСПОЛЬЗОВАНИЕ В ДИАГНОСТИКЕ ВИРУСНЫХ БОЛЕЗНЕЙ».

    В целях определения вида данного вируса при изучении защитных процессов в организме больного человека или зараженного животного применяются серологические методы. Серология (от лат. Serum – сыворотка, жидкая составная часть крови) – это раздел иммунологии, изучающий реакции антигена специфическими защитными веществами, антителами, которые находятся в сыворотке крови. Антитела нейтрализуют действие вируса. Они связываются с определенными антигенными веществами, находящимися на поверхности вирусных частиц. В результате связывания молекул антител с поверхностной структурой вируса последний теряет свои патогенные свойства. Для установления уровня (количества) антител в сыворотке или определения типа данного вируса проводится реакция нейтрализации вируса. Ее можно проводить как на животных, так и на культуре клеток.

    Минимальную концентрацию сыворотки, содержащей антитела, достаточную для того, чтобы нейтрализовать вирус, не дать ему проявить ЦПД, называют титром сыворотки, нейтрализующей вирус. Эта концентрация может быть выявлена и с помощью метода бляшек.

    Для обнаружения антител используется метод торможения гемагглютинации (склеивания эритроцитов под воздействием вируса) и метод связывания комплемента. Из методов, применяемых в вирусологии для различных исследовательских целей, можно еще упомянуть методы, при помощи которых вирусологический материал подготавливается для физических и химических анализов, которые облегчают изучение тонкого строения и состава вирусов. Эти анализы требуют большого количества совершенно чистого вируса. Очистка вируса – процесс, при котором из суспензии с вирусом устраняются все посторонние, загрязняющие ее частицы. В основном это кусочки и «обломки» клеток – хозяев. Одновременно с очисткой происходит обычно сгущение суспензии, повышение концентрации вируса. Так получается исходный материал для многих исследований.

    С помощью серологической реакции можно: определять титр АТ к гемагглютинирующему вирусу в сыворотке; идентифицировать неизвестный гемагглютинирующий вирус по известным сывороткам; установить степень АГ родства 2 вирусов, определять титр вируснейтрализующих АТ в сыворотке, или индекс нейтрализации, идентифицировать неизвестный вирус путем испытания его с различными заведомо известными сыворотками.

    Серологические реакции.

    1. РИФ – реакция иммунофлюорисценции.

    АГ + АТ меченные флюорохромом. Дают контакт 30 минут при 37 С, затем производят тщательный отмыв в физрастворе. Метод обнаружения – флюоресцентное свечение под микроскопом.

    2. ИФА – иммуно-ферментный анализ.

    АГ + АТ с ферментом. Контакт, отмыв, затем добавляют субстрат, который при контакте с АТ-ферментным комплексом дает цветную реакцию.

    3. РСК – реакция связывания комплемента.

    АГ + АТ + комплемент. Контакт. Затем добавляют гем-систему (гемолизин + эритроциты барана). Контакт. Если гемолиза не происходит, значит АГ и АТ связали комплемент. Задержка гемолиза – реакция положительная. Если произошел гемолиз, значит комплемент связан гем-системой – реакция отрицательная.

    4. РДП – реакция диффузной преципитиции.

    АГ + АТ (диффузия в агаровом геле). Метод обнаружения – образование контура преципитации.

    5. РНГА – реакция непрямой гемаглютинации.

    Эритроциты нагружают АГ и при образовании комплекса АГ-АТ происходит агглютинация эритроцитов.

    6. РТГА – реакция торможения гамаглютинации

    7. РТГАд – реакция торможения гемадсорбции

    8. РН – реакция нейтрализации.

    Вирус + АТ. Контакт. Ввод в чувствительную к вирусу систему. Метод обнаружения – нейтрализация инфекционной активности вируса.

    ВОПРОС №23, 25 «РТГА И ЕЕ ИСПОЛЬЗОВАНИЕ В ВИРУСОЛОГИИ. ДОСТОИНСТВА И НЕДОСТАТКИ».

    Одной из простейших серологических реакции является реакция торможения гемаглютинации. Она основана на том, что АТ при встрече с гомологичным АГ нейтрализуют не только его инфекционную, но и гемагглютинирующую активность, т.к. блокируют рецепторы вирионов, ответственные за гемагглютинацию, образуя с ними комплекс «АГ+АТ». Принцип РТГА состоит в том, что в пробирке смешивают равные объемы сыворотки крови и суспензии вируса и после экспозиции определяют, сохранился ли в смеси вирус, путем добавления суспензии эритроцитов. Агглютинация эритроцитов указывает на наличие, а отсутствие гемагглютинации – на отсутствие вируса в смеси. Исчезновение вируса из смеси вирус + сыворотка расценивается как признак взаимодействия АТ сыворотки и вируса. РТГА позволяет решать следующие задачи: определять титр АТ к гемагглютинирующему вирусу в сыворотке; идентифицировать неизвестный гемагглютинирующий вирус по известным сывороткам; установить степень АГ родства двух вирусов. Достоинства РТГА: простота техники, быстрота, не требуется стерильной работы, специфичность, дешевизна. Недостаток РТГА: возможна только с гемагглютинирующими вирусами.

    Принцип титрования АТ в РТГА состоит в следующем: готовят ряд последовательных (обычно 2-х кратных) разведений исследуемой сыворотки в одинаковых объемах (чаще по 0,25 или 0,2 мл); к каждому разведению добавляют такие же объемы гомологичного вируса в титре 4 ГАЕ; смеси выдерживают определенное время при определенной температуре, ко всем смесям добавляют равные объемы 1-% суспензии отмытых эритроцитов; после экспозиции оценивают гемагглютинацию в каждой смеси в крестах.

    ВОПРОС №26 «РДП. ИММУНОЛОГИЧЕСКАЯ ОСНОВА МЕОДА, ПОСТАНОВКА И УЧЕТ РЕЗУЛЬТАТОВ. ДОСТОИНСТВА И НЕДОСТАТКИ».

    РДП в геле основана на способности к диффузии в гелях АТ и растворимых АГ и отсутствие такой способности у комплекса «АГ+АТ». Этот комплекс образуется при контакте диффундирующих навстречу друг другу гомологичных АГ и АТ. Он осаждается на месте образования в толще геля в виде полосы преципитации. В качестве геля используют крахмал, желатин, агар-агар и другое. В лабораторной практике очень часто используют агаровый гель. АТ сыворотки представляют собой молекулы Ig, которые, несмотря на довольно крупные размеры. Способны диффундировать в агаровом геле. АГ вирусов – это вирусные белки. Они могут находится в составе вирионов, представляя так называемые корпускулярные АГ. Крупные размеры которые не позволяют им диффундировать в агаровом геле. Но белки вирусов могут быть и в виде свободных молекул, образующихся в результате деструкции вирионов и (или) разрушения клеток, в которых они образовались. Это растворимые АГ. Они способны к диффузии в агаровом геле. Методика постановки РДП в геле состоит в том, что в слое агарового геля делают несколько углублении и в них наливают АГ и сыворотки так. Чтобы АГ и сыворотка были в соседних лунках. Из лунок АГ и сыворотки начинают диффундировать в слой геля. Диффузия направлена во все стороны от каждой лунки. В пространстве между лунками, содержащими АГ и сыворотку, последние диффундируют навстречу друг другу. Если они окажутся гомологичными, то образуется комплекс «АГ+АТ», который к диффузии не способен вследствие более крупных размеров. Он оседает на месте образования в виде беловатой полосы преципитации. РДП решает задачи: 1) обнаружение в сыворотке крови АТ, гомологичных АГ; 2) обнаружение в материале АГ, гомологичного известным АТ сыворотки;3) идентификация неизвестного вируса; 4) титрование АТ сыворотки. Здесь высшее разведение сыворотки, еще дающее преципитацию с гомологичным АГ, служит показателем титра АТ в сыворотке. РДП часто используют для диагностики лейкоза КРС и инфекционной анемии лошадей. Реакция м\б поставлена в чашках Петри, на предметных стеклах, капиллярах (редко). Для осуществления РДП на предметных стеклах нужны: обезжиренные предметные стекла, градуированные пипетки (2-5 мл), пастеровские пипетки; трубка диаметром 5мм или штамп, влажная камера, инструмент для извлечения из лунок геля, агар, АГ, сыворотки. Постановка РДП: Предметные стекла кладут на холодную поверхность. Из пипетки наливают агар (слой 1,5-2 мм), дают остыть 5-10 минут. Вырезают лунки, запаивают их. В лунки заливают компоненты РДП, помещают во влажную камеру (где оставляют при комнатной температуре или ставят в термостат). Препарат РДП на предметных стеклах можно через 48-72 часа высушить и окрасить раствором амидного черного. Это позволяет сохранить препарат неопределенно долго и улучшает возможность фотографировать полосы преципитации. Плюсы РДП: простота техники постановки, быстрота получения ответа, нетребовательность к чистоте компонентов, не требуется стерильной работы, минимальная потребность в компонентах, пригодность для работы с любыми растворимыми АГ, возможность документирования результата путем фотографирования. Минусы РДП: низкая чувствительность. Реакцию ставят для обнаружения в патматериале вирусов бешенства, инфекционного ринотрахеита КРС, африканской чумы свиней, чумы собак, других; А также для идентификации вирусов инфекционной анемии лошадей, аденовирусов, респираторно-синцитиального вируса, вируса диареи КРС, для обнаружения в сыворотках крови АТ к вирусам инфекционной анемии лошадей, респираторно-синцитиального вируса КРС и во многих других случаях.

    ВОПРОС №27 «РСК. ИММУНОЛОГИЧЕСКАЯ ОСНОВА И ХАРАКТЕРИСТИКА КОМПОНЕНТОВ РЕАКЦИИ».

    Реакция связывания комплемента (РСК) - одна из традиционных серологических реакций, применяемых для диагностики многих вирусных болезней. Само название в значительной мере отражает суть метода, состоящего из двух отдельных этапов. На первом этапе участвуют антиген и антитело (один из этих ингредиентов заранее известен), а также определенное количество предварительно оттитрованного комплемента. При соответствии антигена и антитела их комплекс связывает комплемент, что выявляют на втором этапе с помощью индикаторной системы (смесь бараньих эритроцитов и антисыворотки к ним - гемолизина). Если комплемент связался при взаимодействии антигена и антитела, то лизиса эритроцитов не происходит (положительная РСК). При отрицательной РСК несвязанный комплемент способствует гемолизу эритроцитов (рис. 80).

    РСК часто используют в диагностической практике для обнаружения и идентификации вирусов, обнаружения и титрования антител в сыворотках крови.

    Основными компонентами РСК служат антигены (известные или выявляемые), антитела (известные антисыворотки или исследуемые сыворотки), комплемент, гемолитическая сыворотка и эритроциты барана; в качестве разбавителя используют изотонический раствор хлорида натрия (рН 7,2-7,4) или различные буферные растворы. Антигены и сыворотки могут обладать антикомплементарностью, т. е. способностью адсорбировать комплемент, что задерживает гемолиз и искажает результаты реакции. Чтобы избавиться от антикомплементарности, антигены очищают различными методами: ацетоном, фреоном, эфиром, хлороформом и т. д. в зависимости от вида ткани, используемой в качестве антигена и вируса. Сыворотки освобождают от антикомплементарности путем прогревания, обработкой комплемента и другими методами.

    Антигены для РСК готовят из органов зараженных животных, из аллантоисной или амниотической жидкости зараженных куриных эмбрионов, а также из жидкой среды инфицированных культур клеток.

    значительно отличается от его подготовки при бактериальных инфекциях. Это обусловлено рядом специфических свойств вирусов.

    Во-первых, для освобождения вирусного антигена из клетки приходится часто дополнительно обрабатывать инфекционный материал с целью разрушения клеток и освобождения антигена.

    Во-вторых, большой термолабильностью вирусных антигенов по сравнению с бактериальными. У большинства вирусов комплементфиксирующий антиген связан с инфекционной частицей, и разрушение его идет параллельно с потерей инфекционное™. Поэтому материалы для получения антигена необходимо брать от павших животных только в первые часы после гибели их, а лучше при жизни. Консервирование вируссодержащего материала различными дезинфицирующими средствами часто не дает положительных результатов, так как многие из них вызывают разрушение вирусного антигена.

    В-третьих, неравномерностью фиксации комплемента при различном ношениях их; при избытке антител фиксация комплемента резко снижается, так как активный комплекс антиген + антитело представлен в основном в форме антител и активная поверхность комплемента незначительна. То же самое наблюдается и в зоне избытка антигена, где подавление фиксации комплемента происходит еще быстрее. Поэтому для установления оптимальной зоны фиксации комплемента необходимо предварительное титрование антигена и антител.

    В-четвертых, незначительным объемом комплекса антиген + антитело. Размер вирусных частиц, вступающих в комплекс, очень ничтожен, и поэтому площадь фиксации комплемента незначительна. С увеличением объема комплекса антиген + антитело путем удлинения периода фиксации комплемента (до 18ч при 4 °С) повышается чувствительность реакции, но снижается ее специфичность, так как при продолжительном периоде фиксации увеличивается фиксация комплемента неспецифическими антигенами (тканевыми).

    И наконец, в-пятых, высокой прокомплементарной активностью вирусного антигена. Для исключения неспецифической фиксации комплемента необходима более полная очистка вирусного антигена от тканевых фрагментов.

    Большой помехой для использования РСК в диагностике вирусных болезней животных и человека является неравномерное накопление вирусного антигена в различные периоды болезни и особенно при разных инфекциях.

    РСК применяют для определения типов и подтипов (вариантов) вируса ящура, вызывающих заболевание животных, для проверки производственных штаммов вируса ящура при изготовлении вакцин и лабораторных штаммов в научно-исследовательской работе.

    ВОПРОС №28 «ТИТР ВИРУСОВ И ПРИНЦИПЫ ЕГО ОПРЕДЕЛЕНИЯ В ЕДИНИЦАХ 50%-ОГО ИНФЕКЦИОННОГО ДЕЙСТВИЯ».

    Титр – это количество вируса, содержащегося в единице объема материала. Из локальных повреждений, вызываемых вирусами, наиболее известны бляшки и оспины на ХАО КЭ. Если имеются данные обратные то инфекционная активность вируса может быть измерена в бляшкообразующих единицах (БОЕ) или оспообразующих единицах (ООЕ) 1БОЕ = дозе вируса, способной вызвать образование одной бляшки, а одна ООЕ – одной оспины. Методы: заражают несколько КК или КЭ на ХАО. Высчитывают среднеарифметическое количество оспин или бляшек. Оно = БОЕ или ООЕ вируса. Рассчитывают сколько БОЕ или ООЕ приходится на единицу объема вируссодержащего материала. Это и есть титр. Т=n/Va, где n-сред арифметическое бляшек или оспин, а –разведение материала, V – введенная доза. Метод 50%-ного инфекционного действия. За единицу количества вируса принимается доза, которая способна вызвать инфекционный эффект у 50% зараженных. Число таких доз в единице материала и будет выражать титр вируса в этом материале. Готовят 10 кратное разведение исследуемого материала, затем одинаковыми дозами заражают равные группы живых тест объектов. Учитывают результат действия и находят в каком разведение вирус проявил свое действие на 50%. Если сразу такое разведение не найдено то оно рассчитывается по формуле Т=lgB – (b-50)/(b-a) *lgd, где В – разведение дающие инфекционный эффект более 50%, b – процент дающий инфекционный эффект более 50%, а – менее 50% d – кратность разведения. За 1ГАЕ принимается такая доза вируса, которая способна агглютинировать примерно 50% эритроцитов содержащихся в том же, что и вирус объеме 1% суспензии отмытых эритроцитов. Готовят ряд последовательных кратных разведений материала и к каждому разведению добавляют 1% суспензию. Реакция оценивается в крестах. Реакция с 2 крестами содержит 1ГАЕ, которая умножается на кратность разведения.

    ВОПРОС №29 «БИОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА ВИРУСА ЯЩУРА. ПРИНЦИП ДИАГНОСТИКИ»

    Ящур – остро протекающая высококонтагиозная болезнь парнокопытных, проявляющаяся лихорадкой, везикулярным поражением слизистых оболочек рта, кожи венчика и вымени, у молодых животных поражением слизистых оболочек рта, кожи венчика и вымени, у молодых животных поражением миокарда и скелетных мышц. Ящур регистрируется во многих странах мира. Инкубационный период продолжается 1-3 дня. Иногда до 7-10 дней. Самый характерный признак данного заболевания у животных – везикулярное поражение слизистых оболочек рта и кожи венчика и вымени. У КРС – протекает остро, доброкачественно у взрослых. Вначале отмечают ухудшение аппетита, повышенную саливацию, повышение температуры тела. На 2-3 день на внутренней поверхности губ и языке (у некоторых в области межкопытной щели, на вымени) появляются афты. Через сутки образуются эрозии. Через 2-3 недели эрозии заживают и животное выздоравливает. Вирус относится к семейству Picornaviridae, роду Aphthovirus, РНК – содержащий, не имеет суперкапсидной оболочки. Вирионы – мелкие частицы икосаэдрической формы. Вирус довольно устойчив к действиям внешней среды. Восприимчивы домашние и дикие парнокопытные. Выделять вирус можно уже в инкубационный период. Переболевание может сопровождаться длительным вирусоносительством. Около 50% выздоровевшего КРС могут выделять вирус в течение 8 месяцев, а некоторые до 2 лет. Вирус культивируется на естественно восприимчивых и лабораторных животных: новорожденных мышатах, крольчатах морских свинках. Хорошо размножается в КК почек. Гемагглютинирующими свойствами не обладает. Известно 7 АГ-нных типов ящура: А, О, С, Сат-1, Сат-2, Сат-3, Азия-1. В организме естественно восприимчивых животных вирус индуцирует образование вируснейтрализующих, комплементсвязывающих и преципитирующих АТ.

    Вирус ящура обычно определяют в РСК. Основными компонентами РСК служат АГ, АТ, комплемент, гемолитическая сыворотка и эритроциты барана; в качестве разбавителя используют ИХН или различные буферные растворы. АГ и сыворотки могут обладать антикомплементраностью – способностью адсорбировать комплемент, что задерживает гемолиз и искажает результаты реакции. Чтобы избавиться от антикомплементраности, АГ очищают различными методами: ацетоном, фреоном, эфиром, хлороформом в зависимости от вида ткани, используемой в качестве АГ и вируса. АГ для РСК готовят из органов зараженных животных, из аллантоисной и амниотической жидкости зараженных КЭ, а также из жидкой среды инфицированных КК. РСК применяют для определения типов и подтипов вируса ящура, вызывающих заболевание животных, для проверки производственных штаммов вируса ящура при изготовлении вакцин и лабораторных штаммов в научно-исследовательской работе.

    ВОПРОС №30 «ЛЮМИНИСЦЕНТНАЯ МИКРОСКОПИЯ. ОСНОВЫ ИММУНОФЛЮОРЕСЦЕНЦИИ».

    В основе метода лежит явление люминесценции, сущность которого в том, что поглощая различные виды энергии (световую, электрическую) атомы некоторых веществ переходят в возбужденное состояние, а затем, возвращаясь в исходное состояние, выделяют поглощенную энергию в виде светового излучения. Люминесценция наблюдается в виде флуоресценции – свечение, возникающее в момент облучения возбуждающим светом и прекращающееся сразу после его окончания. Фосфоресценция – свечение продолжающееся длительное время и по окончании процесса возбуждения.

    ВОПРОС № 31 «ВИРУС БЕШЕНСТВА, ЕГО СВОЙСТВА. ПАТОГЕННОСТЬ. ПРИНЦИПЫ ДИАГНОСТИКИ».

    Бешенство – острая инфекционная болезнь, протекающая с тяжелым поражением НС, как правило, с летальным исходом. Восприимчивы человек и все млекопитающие животные. Бешенство распространено повсеместно. Возбудителя передают собаки, кошки, дикие грызуны и хищники, а также кровососущие летучие мыши-вампиры. Продолжительность инкубационного периода зависит от места, силы укуса, количества и вирулентности попавшего в рану вируса, резистентности покусанного животного. Инкубационный период длится от 1-3 недель до года и более. Болезнь протекает остро. Клинические признаки при атипичном течение – потеря аппетита, атония рубца, паралич глотки, слюнотечение. Также может быть буйное и тихое течение болезни. Вирус бешенства (ВБ) обладает выраженной нейропробазией. Проникая с периферии по нервным стволам в центральную НС центростремительно, он распространяется в организме центробежно по периферическим нервам и попадает в разные органы, включая слюнные железы.

    Вирус относится к семейству Rhabdoviridae, роду Lyssavirus. Вирионы имеют форму стержня с обрубленным концом. Вирион вируса – РНК-содержащий со спиральным типом симметрии, имеет липопротеидную оболочку. Низкие температуры консервируют вирус. Вирион ВБ содержит гликопротеидный и нуклеокапсидный АГ. Первый индуцирует образование вируснейтрализующих АТ, а второй – комплементсвязывающих и преципитирующих АТ. В организме вирус локализуется главным образом в ЦНС, в слюнных железах, слюне. Культивируется на мышах, кроликах, морских свинках, в первичных культурах клеток. Размножение вируса в КК не всегда проявляется ЦПД. Источников инфекции являются больные животные. Они передают вирус во время укуса. Диагноз на бешенство ставят на основании эпизоотологических, клинических данных и результатов лабораторных исследований, имеющих решающее значение. Для исследования направляют в лабораторию свежие трупы мелких животных целиком, а от крупных и средних животных – голову с 2 шейными позвонками. Трупы мелких животных перед отправкой на исследование обрабатывают инсектицидами. Лабораторная диагностика включает: обнаружение вирусного АГ в РИФ и РДП, телец Бабеша-Негри и биопробы на белых мышатах. РИФ – для данной реакции биопромышленность выпускает флуоресцирующий антирабический гамма-глобулин. Принцип – 1)Делают отпечатки или мазки из различных отделов ГМ левой и правой стороны на предметных стеклах (не менее 2 препаратов из каждого отдела); 2)Их высушивают, фиксируют в охлажденном ацетоне; 3)Высушивают, наносят флуоресцирующий гамма-глобулин; 4)Помещают во влажную камеру; 5)Тщательно промываю ИХН, споласкивают водой, высушивают на воздухе, наносят нефлуоресцирующее иммерсионное масло и просматривают под люминесцентным микроскопом. В препаратах, содержащих АГ ВБ, наблюдаются разной величины и формы флуоресцирующие желто-зеленым цветом гранулы в нейронах, но чаще вне клеток. РДП – 1)Наливают на предметные стекла агаровый гель 2)Делают лунки (Д=4-5 мм); 3)Лунки заполняют пастообразной массой из отделов ГМ. 4)Контроли с «+» и «-« АГ ставят на отдельном стекле по тому же трафарету; 5)После заполнения лунок препараты помещают во влажную камеру и ставят в термостат при 37С на 6 часов, затем при комнатной температуре на 18 часов. Реакцию считают положительной при появлении одной или 2-3 линий преципитации любой интенсивности между лунками, содержащими суспензию мозга и антирабический гамма-глобулин. ВЫЯВЛЕНИЕ ТЕЛЕЦ – на предметных стеклах делают тонкие мазки или отпечатки из всех отделов ГМ и окрашивают по Селлерсу или Муромцеву или Манну или Ленцу. БИОПРОБА – отбирают белых мышей (16-20 грамм), нервную ткань из всех отделов ГМ растирают в ступке со стерильным песком, добавляют ИХН до 10-% суспензии, отстаивают 30-40 минут и для заражения используют надосадочную жидкость для заражения мышат. Заражают 10-12 шт: половину интрацеребрально по 0,03 мл, половину подкожно в область носика или в верхнюю губу по 0,1-0,2 мл. Наблюдают 30 дней. При наличии ВБ в патматериале с 7-10 дня после заражения у мышей наблюдают симптомы: взъерошенность шерсти, своеобразную горбатость спины, нарушение координации движений, паралич задних, затем передних конечностей и гибель. У павших мышей ГМ исследуют в РИФ на обнаружение телец Бабеша-Негри и ставят РДП. Биопробу на бешенство считают положительно, если в препаратах из мозга зараженных мышат обнаруживают тельца Бабеша-Негри или выявляют АГ методами РИФ или РДП. Отрицательный диагноз – отсутствие гибели мышат в течение 30 дней.

    ВОПРОС №32 «СОВРЕМЕННАЯ КЛАССИФИКАЦИЯ ИММУНИТЕТА. СТРУКТУРА АТ ХАРАКТЕРИСТИКА РАЗЛИЧНЫХ КЛАССОВ ИММУНОГЛОБУЛИНОВ И ИХ СТРОЕНИЕ».

    Иммунитет – состояние невосприимчивости организма к воздействию патогенных микробов, их токсинов и других чужеродных веществ биологической природы.

    Иммунная система организма – система органов и клеток, осуществляющая реагирование против чужеродных субстанции.

    Врожденный иммунитет – невосприимчивость к инфекционным агентам, расположенная в геноме и проявляемая количеством и порядком расположения ганглиозидов определенного типа на поверхности мембран клеток. Он весьма прочный, но не абсолютный.

    Приобретенный иммунитет – устойчивость организма только к определенному возбудителю болезни. Этот иммунитет подразделяют на естественный и искусственный. Естественный делят на 1.активный – образуется после естественного переболевания животного, иногда после попадания многоразовых малых доз возбудителя (иммунизирующая субинфекция). 2.пассивный – иммунитет новорожденных, приобретенный за счет поступления плоду от матери антител через плаценту или после рождения через кишечник с молозивом. Различают естественный и искусственный колостральный иммунитет, в первом случае иммунитет возникает из-за антител, естественно выработанных в организме матери под воздействием различных антигенов окружающей среды. Во втором случае путем направленной иммунизации организма матери. Естественно приобретенный активный иммунитет может сохраняться 2 года, иногда пожизненно, искусственно приобретенный может обеспечивать состояние невосприимчивости от нескольких недель до нескольких месяцев.

    Искусственно приобретенный иммунитет подразделяют еще и на 1.активный – возникает в результате иммунизации животных вакцинами (развивается через 7-14 дней и сохраняется до нескольких месяцев до 1 года и больше) и пассивный – создается при введении в организм иммунной сыворотки, содержащей специфические антитела против определенного возбудителя болезни.

    Различают также виды иммунитетов: 1.Антибактериальный иммунитет – защитные механизмы направлены против патогенного микроба. 2.Противовирусный – организм вырабатывает противовирусные антитела. 3.Антитоксический иммунитет – при образовании которого бактерии не разрушаются, но вырабатываются антитела, эффективно нейтрализующие токсины в организме больного.

    4.Местный иммунитет. 5.Стерильный иммунитет – если после перенесенной болезни организм освобождается от возбудителя, сохраняя при этом состояние невосприимчивости. 6.Нестирильный – когда иммунитет сохраняется только пока в организме находится возбудитель болезни. 7.Гуморальный иммунитет – выработка в зараженном организме специфических антител. 8.Клеточный – обеспечивается за счет образования специфически реагирующих с возбудителем Т-лимфоцитов.

    Неспецифические факторы защиты организма.

    Они выступают в качестве первого защитного барьера, не нуждаются в перестройке.

    Кожа – мощный барьер для проникновения микроорганизмов, при этом имеют значение механические факторы.

    Слизистые оболочки – в дыхательных путях с помощью мерцательного эпителия (передвигает пленку слизи вместе с микроорганизмами по направлению к естественным отверстиям), во рту к носовым ходам (кашель и чихание). Эти оболочки выделяют секреты, обладающие бактерицидными свойствами, в частности за счет лизоцима и IgA. Секреты пищеварительного тракта обладают способностью обезвреживать многие патогенные микробы. Слюна содержит лизоцим, амилазу, фосфатазу. Желчь вызывает гибель пастерелл. В слизистой кишечника мощные антимикробные факторы.

    Лимфатические узлы – в них развивается воспаление, в его зоне происходит фиксация микробов нитями фибрина. В воспаление участвуют система комплемента, эндогенные медиаторы.

    Фагоцитоз – процесс активного поглощения клетками организма попадающих в него патогенных живых или убитых микробов и других чужеродных частиц с последующим перевариванием с помощью ферментов.

    АТ могут существовать в миллионах разновидностей – каждая со своим уникальным участком для связывания АГ. В совокупности называемые иммуноглобулином (Ig), АТ-белки образуют один из основных классов белков крови, составляя по массе примерно 20% суммарного белка плазмы. Когда АГ присоединяется к мембранным антигенспецифическим рецепторам В-клетки, наступает клеточная пролиферация и дифференцировка с образованием клеток, секретирующих АТ. АТ имеют 2 идентичных АГ-связывающих участка. Простейшие молекулы АТ схематически имеют форму буквы гамма с двумя идентичными АГ-связывающими участками – по одному на конце каждой из двух «ветвей». Поскольку таких участков 2, эти АТ называют бивалентными. Защитное действие АТ объясняется не просто их способностью связывать АГ. Они выполняют и целый ряд других функций, в которых участвует «хвост», называются эффекторными функциями и обусловлены не участием в них «хвоста», а структурой Fc-фрагмента. Эта область молекулы определяет, что произойдет с АГ, если он оказался связанным. Антитела с одинаковыми АГ-связывающими участками могут иметь весьма разные «хвостовые» области, а поэтому и разные функциональные свойства. Молекула Ig G,D,E и сывороточного IgA состоит из 4 полипептидных цепей – 2 легких и 2 тяжелых. У высших позвоночных существует 5 разных классов антител – IgA, IgD, IgE, IgG, IgM каждый со своим классом тяжелых цепей. IgG – АТ составляют основной класс Ig находящихся в крови. Они производятся в больших количествах при вторичном ответе, это единственные АТ, которые могут переходить от матери к плоду. Это преобладающий класс АТ, образуемых при большинстве вторичных иммунных ответов, на ранних стадиях первичного иммунного ответа в кровь поступают главным образом АТ IgM – они также первый класс АТ, продуцируемых развивающимися В-клетками. IgA – основной класс АТ в секретах молока, слюне слезах, секретах дыхательных путей и кишечного тракта. АТ защищают позвоночных от инфекций, инактивируя вирусы, мобилизуя комплемент и различные клетки, которые убивают и поглощают внедрившиеся МО.

    ВОПРОС №33 «ОСОБЕННОСТИ ПРОТИВОВИРУСНОГО ИММУНИТЕТА».

    1.Противовирусный иммунитет связан с своеобразными защитными механизмами, т.к. вирусы не способны развиваться и размножаться в неживой клетке. Защитное приспособление организма направлено на 2 формы существования вируса. На внеклеточный вирусные неспецифические и специфические факторы иммунитета, на внутриклеточную форму – процесс фагоцитоза. При вирусных инфекциях он всегда незавершенный, интерферон оказывает экзогенное действие на внеклеточную форму, вирусы теряют способность адсорбции, эндогенный интерферон синтезируется в клетках в ответ на вирусный АГ.

    2.Средства и методы воздействия на вирусы может быть эффективными только на определенных стадиях существования вируса, что ярче всего проявляется при лечении больных иммунными препаратами, т.к. АТ не способны проникнуть внутрь клеток.

    3.Противовирусный иммунитет является более продолжительным по сравнению с бактериальным, а при отдельных вирусных инфекциях он пожизненный (чума КРС, собак, катаральная лихорадка овец, оспа).

    ВОПРОС №34 «РОЛЬ ЛИМФОИДНЫХ КЛЕТОК В ПРОТИВОВИРУСНОМ ИММУНИТЕТЕ (ХАРАКТЕРИСТИКА Т И В ЛИМФОЦИТОВ)».

    Т-лимфоциты. Тимусзависимые лимфоциты образуются из стволовых клеток кроветворной ткани. Предшественники Т-лимфоцитов поступают в тимус, претерпевают в нем дифференцировку и выходят уже в виде клеток с различными функциями, несущих на себе характерные маркеры. Различают несколько субпопуляций Т-лимфоцитов в зависимости от биологических свойств.

    Т-хелперы (помощники) относятся к категории регуляторных вспомогательных клеток. Стимулируют пролиферацию В-лимфоцитов и дифференцировку в антителообразующие клетки (плазматические клетки). Установлено, что ответ В-лимфоцитов на воздействие большинства белковых антигенов полностью зависит от помощи Т-хелперов, которая осуществляется двумя способами. В первом случае требуется прямое воздействие хелперной Т-клетки и реагирующей В-клетки. Полагают, что Т-клетка распознает детерминанты антигенной молекулы которая уже зафиксирована на В-клетке рецепторами клеток: Во втором случае хелперная функция Т-клеток в активации В-лимфоцитов может осуществляться также путем образования растворимых неспецифических хелперных факторов - лимфокинов (цитокинов).

    Т-киллеры (убийцы) выполняют эффекторные функции, осуществляя клеточные формы иммунного ответа. Они распознают и лизируют клетки, на поверхности которых имеются чужеродные для данного организма антигены (опухолевые, вирусные и гистосовместимости). Пролиферация и диференцировка Т-киллеров происходит с участием Т-хелперов действие которых осуществляется в основном с помощью растворимых факторов, в частности интерлеикина. Установлено, Т-киллеры осуществляют реакцию гиперчувствительности замедленного типа.

    Т-у с и л и т е л и активизируют иммунный ответ в рамках Т-подсистемы иммунитета, а Т-хелперы обеспечивают возможность его развития в В-звене иммунитета в ответ на тимусзависимые антигены.

    Т-супрессоры (подавляющие) обеспечивают внутреннюю саморегуляцию системы иммунитета двумя способами: клетки супрессоры ограничивают иммунный ответ на антигены; предотвращают развитие аутоиммунных реакций. Т-сулрессоры тормозят выработку антител, развитие гиперчувствительности замедленного типа; формирование Т-киллеров обеспечивает становление поддержание иммунологической толерантности.

    Т-клетки иммунной памяти обеспечивают иммунный ответ вторичного типа в случае повторного контакта организма с данным антигеном. На мембранах Т-клеток обнаружены антигенсвязывающие рецепторы и Fe-рецепторы, IgA или IgM. Нулевые лимфоциты не имеют отличительных марке ров Т – и В-лимфоцитов. Они способны осуществлять антитело зависимый, не требующий присутствия комплемента, лизис клеток-мишеней при наличии специфических против данных клеток антител. К-лимфоциты являются разновидностью нулевых лимфоцитов. Для них клетками-мишенями являются опухолевые клетки, измененные вирусами Т- и В-лимфоциты, моноциты, фибробласты, эритроциты.

    В-лимфоциты. Как и Т-лимфоциты, образуются из стоволовых клеток кроветворной ткани. Предшественники В-лимфоцитов в сумке Фабрициуса претерпевают дифференцировку и затем мигрируют в лимфатические узлы и селезенку, где и выполняют свои специфические функции.

    Установлено наличие двух классов В-клеток: В-эффекторы и В-регуляторы. Эффекторными клетками В-лимфоцитов являются антителообразующие клетки (плазматические), синтезирующие антитела одной специфичности, т. е. против одной антигенной детерминанты. В-регуляторы, в свою очередь, делятся на супрессоры и усилители (амплифайеры). Функция регуляторов заключается в выделении медиаторов, угнетающих продукцию ДНК в Т- и В-лимфоцитах только в пределах костного мозга, а также усиление В-эффекторов. В-лимфоциты крупнее Т-лимфоцитов (соответственно 8 и 5 мкм). Благодаря электронной микроскопии выяснено, что поверхность В-лимфоцитов покрыта многочисленными ворсинками и складчатая, а поверхность Т-лимфоцитов гладкая.

    ВОПРОС №35 «РОЛЬ КЛЕТОЧНЫХ ФАКТОРОВ В ПРОТИВОВИРУСНОМ ИММУНТИТЕТЕ».

    Отличается от гуморального тем, что эффекторными элементами клеточного иммунитета являются Т-лимфоциты, а гуморально – плазматические клетки. Он имеет особое значение при инфекциях, вызванных многими вирусами, бактериями, грибами.

    Образование цитотоксических Т-клеток (ЦТК) – среди АГ клеточной поверхности, способные вызывать образование ЦТК – продукты МНС (мононуклеарная система), вирусы, опухолеспецифические АГ. ЦТК имеют рецепторы, с помощью которых происходит связывание АГ и запускаются процессы запускающие лизис клетки. Литическая активность Т-клеток начинается с тесного взаимодействия между киллерной клеткой и клеткой-мишенью, происходит изменение мембранной проницаемости клетки-мишени, заканчивающееся разрывом клеточной мембраны.

    Способность непосредственно лизировать широкий набор клеток-мишеней, в особенности опухолевых, обладают ПК – они могут лизировать клетки независимо от продуктов МНС (интерферон и ИЛ-2 усиливают литическую активность ПК).

    ГЗТ – зависимая от Т-клеток иммунологическая реакция, проявляющаяся в виде воспаления в месте попадания в организм АГ, обычно в коже. Лимфоциты, способные переностить ГЗТ, являются Т-клетками и называются ТГЗТ-лимфоцитами (они могут активизироваться и реагировать на белковые АГ, аллоантигены, антигены опухолей, на АГ вирусов, бактерий, грибов, простейших.

    Большую роль в клеточном иммунитете играю макрофаги. Когда возбудители размножаются внутри фагоцитов внутриклеточное уничтожение происходит лишь после того как макрофаги получают стимул от спецсенсибилизированных Т-лимфоцитов. Т-лимфоциты активируют макрофаги за счет выделения лимфокинов.

    ВОПРОС №36 «РОЛЬ ГУМОРАЛЬНЫХ ФАКТОРОВ В ПРОТИВОВИРУСНОМ ИММУНИТЕТЕ»

    Кроме АТ – специфического фактора противовирусного иммунитета – организм вырабатывает особые вирусотропные вещества – ингибиторы, способные взаимодействовать с вирусами и подавлять их активность. Сывороточные ингибиторы обладают широким диапазоном действия: одни подавляют гемагглютинирующие свойства вирусов, другие – их цитопатогенное действие, третьи – их инфекционную активность. Термолабильные ингибиторы содержатся в нормальных сыворотках человека и животных. Они обладают широким диапазоном вируснейтрализующего действия, способны блокировать гемагглютинирующую активность вирусов гриппа, нью-каслской болезни, кори, арбовирусов и других и нейтрализовать инфекционные и иммуногенные свойства ингибиторочувствительных вирусов. Термостабильные гамма-ингибиторы высокоактивны против современных вариантов вируса гриппа. Термостабильные альфа-ингибиторы блокируют гемагглютинирующую, но не инфекционную активность вируса.

    ВОПРОС №37 «ПРОТИВОВИРУСНЫЕ АТ, ИХ СВОЙСТВА, БИОЛОГИЧЕСКАЯ РОЛЬ, МЕТОДЫ ОБНАРУЖЕНИЯ И ТИТРОВАНИЯ».

    АТ – белки, образующиеся в организме на парентеральное введение высокомолекулярных веществ с признаками генетической чужеродности для данного организма. АТ способны вступать во взаимодействие с АГ в ответ на который оно образовалось и нейтрализовать его биологическую активность. Обычный источник АТ – сыворотка крови. При встрече с АГ АТ нейтрализует не только его инфекционную, но и гемагглютинирующую активность, т.к. блокирует рецепторы вирионов, ответственные за гемагглютинацию, в результате образуется комплекс «АГ+АТ».

    АТ могут существовать в миллионах разновидностей – каждая со своим уникальным участком для связывания АГ. В совокупности называемые иммуноглобулином (Ig), АТ-белки образуют один из основных классов белков крови, составляя по массе примерно 20% суммарного белка плазмы. Когда АГ присоединяется к мембранным антигенспецифическим рецепторам В-клетки, наступает клеточная пролиферация и дифференцировка с образованием клеток, секретирующих АТ. АТ имеют 2 идентичных АГ-связывающих участка. Простейшие молекулы АТ схематически имеют форму буквы гамма с двумя идентичными АГ-связывающими участками – по одному на конце каждой из двух «ветвей». Поскольку таких участков 2, эти АТ называют бивалентными. Защитное действие АТ объясняется не просто их способностью связывать АГ. Они выполняют и целый ряд других функций, в которых участвует «хвост», называются эффекторными функциями и обусловлены не участием в них «хвоста», а структурой Fc-фрагмента. Эта область молекулы определяет, что произойдет с АГ, если он оказался связанным. Антитела с одинаковыми АГ-связывающими участками могут иметь весьма разные «хвостовые» области, а поэтому и разные функциональные свойства. Молекула Ig G,D,E и сывороточного IgA состоит из 4 полипептидных цепей – 2 легких и 2 тяжелых. У высших позвоночных существует 5 разных классов антител – IgA, IgD, IgE, IgG, IgM каждый со своим классом тяжелых цепей. IgG – АТ составляют основной класс Ig находящихся в крови. Они производятся в больших количествах при вторичном ответе, это единственные АТ, которые могут переходить от матери к плоду. Это преобладающий класс АТ, образуемых при большинстве вторичных иммунных ответов, на ранних стадиях первичного иммунного ответа в кровь поступают главным образом АТ IgM – они также первый класс АТ, продуцируемых развивающимися В-клетками. IgA – основной класс АТ в секретах молока, слюне слезах, секретах дыхательных путей и кишечного тракта. АТ защищают позвоночных от инфекций, инактивируя вирусы, мобилизуя комплемент и различные клетки, которые убивают и поглощают

    внедрившиеся МО.

    ВОПРОС №38 «ИНТЕРФЕРОН И ЕГО РОЛЬ В ПРОТИВОВИРУСНОМ ИММУНИТЕТЕ».

    В клетках человека имеется 27 генетических локусов для интерферонов (далее И) – 14 функционирующие. И закодированы в генетическом аппарате клетки. Различают альфа, бета, гамма – И. Система его не имеет центрального органа, все клетки обладают способностью его синтезировать. Для его образования нужны индукторы (вирусы, бактериальные токсины, экстракты из бактерии и грибов, двуспиральные РНК (наиболее эффективны) и другие). Вирусинфецированный И – альфа и бета; гамма-И образуется под влиянием фитогемагглютинина с СЭА. При индукции И синтезируется 2 или более его типов. Наиболее активно индуцирующие вирусы – миксо-, арбовирусы. Интерфероногенность вирусов возрастает с понижением их вирулентности для организма. Индукторы не вирусной природы стимулируют более быстрое и кратковременное накопление в организме «тяжелого» И (с высокой молекулярной массой). И можно получить через 4 часа после внутривенного введения Ig. И не влияет на адсорбцию, виропексис, депротеинизацию вирионов, он подавляет продукцию вируса. Действует он не на какой-то определенный вирус, а вообще на многие виды. И способен усиливать фагоцитарную активность (макрофаги при воздействии на них И имеют значительно больше вакуолей, быстрее прикрепляются к стеклу, активнее захватывают бактерии). Препараты интерферона угнетают рост клеток, подавляет рост и опухолевых клеток. И угнетает АТ образование, оказывает прямое воздействие на В-лимфоциты. И способствует повышению киллерной активности Т- клеток. Предварительная обработка клеток или животных не большими дозами И приводит к повышению продукции И в ответ на последнюю индукцию его синтеза (прайминг). При обработке продуцентов И повышается количествами И наблюдается блокинг (противоположный эффект). На выработку И влияют внешние условия (погода, температура воздуха). Ионизирующие излучение понижает продукцию И. В процессе роста организма количество ингибиторов И понижается. И молодняка проявляет пониженной антивирусное действие по сравнению с И взрослого животного, потому что снижена продукция мононуклеарными фагоцитами. При образовании И в клетках новорожденных происходит активизация и выход из лизосом катепсина Д, что ведет к протеолитической деградации И. По мере роста уменьшаются компоненты, способствующие выходу катепсина Д из лизосом. Наиболее чувствительны к И вирусы имеющие внешнюю оболочку, содержащие липиды (миксовирусы, группа оспы, арбовирусы). Для медицинских и ветеринарных целей используют в основном индукторы эндогенного И, но и экзогенный И тоже используют. Подобно гормонам И-ны выделяются одними клетками и переносят через межклеточное пространство специфический сигнал на другие клетки. И – «белковый фактор», который не обладает вирус-специфичностью и антивирусная его активность осуществляется с участием клеточного метаболизма, вовлекающего синтез РНК, белка.

    ВОПРОС №39 «ПРИНЦИП ПОЛУЧЕНИЯ БАКТЕРИОФАГОВ. ОПРЕДЕЛЕНИЕ АКТИВНОСТИ И ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ ФАГОВ».

    Фаг получают путем добавления в культуру МО специального фага выдержанного в течение суток при температуре 37 градусов, фильтруют через бактериальные фильтры, фильтрат проверяют на чистоту путем посева; безвредность и активность, титр фага.

    Определение активности фага.

    Используют качественные и количественные методы. Количество фага определяется титрованием на жидкой или плотной питательных средах. Для этого фаг разводят десятикратно. Каждому разведению добавляют одинаковое количество суточной бульонной культуры бактерий. Затем помещают в термостат, учитывают результат. Титр определяют после выделения смеси в 1 сутки в термостате.

    За титр фага принимают наибольшее его разведение, которое способно задержать рост МО. Выражают степенью его разведения. Только вирулентные фаги обуславливают полное разрушение клетки, образование фаговых частиц.

    ВОПРОС №40 «ПАССИВНАЯ СПЕЦИФИЧЕСКАЯ ПРОФИЛАКТИКА ВИРУСНЫХ БОЛЕЗЕНЙ. ПРИНЦИП ПОЛУЧЕНИЯ».

    Препараты для пассивной ИП – для парентерального и перорального введения АТ или Ig. С целью проведения ИП применяют иммунные, гипериммунные сыворотки, реконвалесцентную и аллогенную сыворотки.

    Реконвалесцентная сыворотка – сыворотка доноров переболевших или инфицированных животных. Ее используют, когда нет более эффективных средств в дозе 1мл\кг массы тела.

    Гипериммунные сыворотки – сыворотки доноров, которые получают в результате однократного введения по определенной схеме массированных доз АГ. Подбирают здорового донора, не болевшего ранее этим заболеванием. Его вакцинируют и через 2-3 недели начинают вводить по определенной схеме в нарастающих дозах, доводят до пика нарастания АТ. Пик определяют путем постановки серологической реакцией на титр АТ (сыворотку проверяют на стерильность, активность и безвредность. Доза 2 мл\кг (лечебная), 1-1,5 мл\кг (профилактика). Вводят дробно. Сначала вводят сенсибилизированную дозу, а через 2-3 часа – разрешающую дозу, чтобы избежать анафилактического шока.

    Аллогенная сыворотка – сборная сыворотка, которую получают от разных животных в условиях одного хозяйства. Она содержит большой набор АТ и различных АГ.

    ВОПРОС №41 «СПЕЦИФИЧЕСКАЯ ПРОФИЛАКТИКА ВИРУСНЫХ БОЛЕЗНЕЙ. ВИДЫ ВАКЦИН И МЕТОДЫ ИХ ВВЕДЕНИЯ».

    1.В практике эпизоотологии увеличение размеров и плотности поголовья животных возрастает риск появления эпизоотий. Главным принципом в борьбе с ними является разрыв инфекционной цепи во всех участках или прекращение перехода эпизоотического процесса в скрытое состояние. Одним из главных инструментов разрыва цепи является своевременная профилактика. Для животноводства, развивающееся на промышленной основе борьба со всеми факторами, в.т.ч. с патогенными МО и вирусами является одним из важнейших условий благополучного поголовья. ИП (иммунопрофилактика) при ее правильном включении в стратегию борьбы с инфекционными болезнями значительно уменьшает опасность.

    Целью ИП являются не только искоренение инфекционных болезней, но и сохранение продуктивности, поэтому необходимо стремиться к созданию таких вакцин, которые способны обеспечить высокую степень защиты всего поголовья сразу после вакцинации, не зависимо от возраста животных.

    ИП имеет ряд преимуществ:

    1.Принцип действия ИП основан на специфическом изменении организма животного в сторону максимального снижения возможности для возбудителя вызвать инфекционное заболевание.

    2.ИП действует непрерывно и долго, иногда всю жизнь.

    3.ИП не только изменяет реактивность организма животного, но и повышает способность к иммунной защите у всего поголовья.

    4.Действие ИП на эпизоотический процесс может быть точно рассчитано.

    5.При соответствующем выборе моментов прививки ИП обеспечивают максимальную защиту в самые опасные для заражения периоды жизни.

    6.ИП можно увязать с технологическим процессом в животноводстве.

    7.Используемые для ИП препараты можно дозировать, применять в разных сочетаниях и стандартизировать.

    8.В отличие от АБ и химических препаратов ИП не вызывает явления резистентности у МО.

    9.ИП требует меньших экономических затрат, затрат сырья.

    10. ИП не оказывает никакого влияния на качество продукции животных.

    Отрицательные стороны:

    1.Пероценка возможностей ИП. Владелец животного часто убежден, сто с проведением вакцинации уже все сделано для защиты, что приводит к ослаблению санитарно-гигиенических мер.

    2.Слишком большое возрастание конечной стоимости продукции.

    3.После прививочные реакции, которые в течение определенного времени снижает продуктивность, если используется недостаточно отработанная вакцина.

    4.Слишком частое беспокойство животных, ведущее к снижению продуктивности.

    5.Возникновение диагностических проблем и возрастание трудности в борьбе с заболеваниями, если вакцинные и патогенные штаммы в обычных условиях не различаются или различаются с большим трудом.

    Нецелесообразное применение вакцин может принести вред, поэтому для каждой конкретной инфекционной болезни и эпизоотической ситуации надо продуманно выбрать вакцину и вариант ее применения с учетом экономических затрат и эффективности, чтобы обеспечить наивысший результат массовых прививок.

    Иммунопрофилактика сложилась на основе давнего опыта человечества, согласно которому люди, перенесшие инфекционные заболевания вторично ими не заболевали. Раньше, когда в Афинах была чума человека. Фукидид сообщал, что больные оставались без помощи если бы за ними не ухаживали выздоравливающие люди. В Китае в 16 веке при оспе человека был обычай: вдыхать через нос высушенные растертые оспенные корочки. Дженер изобрел вакцину от оспы. Пастер предложил способ вакцинации против бешенства.

    Профилактика вирусных болезней строится на тех же принципах, что и профилактика других инфекционных болезней:

    1.Проведение организационных мероприятий.

    3.Химиопрофилактика.

    Специфическая профилактика вирусных болезней обеспечивается применением живых, инактивированных, поли- и моновалентных сывороток.

    Классификация и характеристика иммунопрепаратов:

    Биопрепараты – продукты биологического происхождения, используемые для активной и пассивной ИП.

    Препараты для пассивной ИП – для парентерального и перорального введения АТ или Ig. С целью проведения ИП применяют иммунные, гипериммунные сыворотки, реконвалесцентную и аллогенную сыворотки.

    Реконвалесцентная сыворотка – сыворотка доноров переболевших или инфицированных животных. Ее используют, когда нет более эффективных средств в дозе 1мл\кг массы тела.

    Гипериммунные сыворотки – сыворотки доноров, которые получают в результате однократного введения по определенной схеме массированных доз АГ. Подбирают здорового донора, не болевшего ранее этим заболеванием. Его вакцинируют и через 2-3 недели начинают вводить по определенной схеме в нарастающих дозах, доводят до пика нарастания АТ. Пик определяют путем постановки серологической реакцией на титр АТ (сыворотку проверяют на стерильность, активность и безвредность. Доза 2 мл\кг (лечебная), 1-1,5 мл\кг (профилактика). Вводят дробно. Сначала вводят сенсибилизированную дозу, а через 2-3 часа – разрешающую дозу, чтобы избежать анафилактического шока.

    Гамма-глобулины получают из гипериммунных сывороток путем освобождения от балластных белков. Их вводят п\к или в\м в дозе 0,5-2 мл\кг. Сначала вводится сенсибилизация, затем разрешающая доза.

    Аллогенная сыворотка – сборная сыворотка, которую получают от разных животных в условиях одного хозяйства. Она содержит большой набор АТ и различных АГ.

    Препараты для активной иммунизации – вакцины. Существуют живые и инактивированные вакцины.

    Вакцины также классифицируют по: 1) Исходному вируссодержащему материалу – тканевые, эмбрион-вирус вакцины, культуральные вирусовакцины; 2) по методу аттенуации – лапинизированные (против ящура, чумы КРС и другого, используют кроликов), капринизированные (через организм козы, против оспы овец пассажированием через несколько коз, против КРС), овинизированные (через овец – против чумы КРС, ящура).

    Методы введения вакцин:

    1.Подкожно

    2.Внутримышечно

    3.Аэрозольное

    4.Ректальный метод

    5.Интраназально

    ВОПРОС №42 «ИНАКТИВИРОВАННЫЕ ПРОТИВОВИРУСНЫЕ ВАКЦИНЫ, ИХ ПОЛУЧЕНИЕ, СВОЙСТВА, ПРИМЕНЕНИЕ, ОТЛИЧИЕ ОТ ЖИВЫХ ВАКЦИН».

    Инактивированные вакцины – сложные по составу препараты. Производство их требует большого количества вируса. Основное требование, предъявляемое к убитым вакцинам, – полная и необратимая инактивация генома при максимальной сохранности АГ детерминанты и иммунная защита привитых животных. Для получения инактивированных вакцин в качестве инактивантов широко используются формалин, хлороформ, тиомерсал, гидроксиламин, этанол, бета-пропиолактон, этиленимин, УФ-, гамма-облучение, температура. Инактивированные вакцины применяются только парентерально. В состав их обязательно входят адъюванты – неспецифические стимуляторы иммуногенеза. Требуется большая дозировка и, как правило, повторное введение. Они создают менее напряженный, непродолжительный иммунитет, чем при употреблении живых вакцин.

    ВОПРОС №43 «ФАКТОРЫ ПРОТИВОВИРУСНОГО ИММУНИТЕТА, ИХ ХАРАКТЕРИСТИКА».

    Специфические

    1)Связан с качественносвоеобразными защитными механизмами, т.к. вирусы не способны развиваться вне живой клетки 2)Защита направлена на 2 формы сущ. вируса: вне и внутриклеточную. На покоящиеся форму действуют специфические и неспецифические факторы, гуморальные и клеточные факторы защиты. Вегетативные формы – интерферон, который препятствует синтезу иРНК вируса. 3)Вирус нейтрализующее АТ не реагирует с вирусными информационными НК. 4)Методы и средства нейтрализации вируса эффективны только на определенном этапе. 5)Особые факторы защиты: образуются внеклеточные оксифильные и базофильные гранулы и наличие противовирусных ингибиторов. 6)Данный иммунитет длительный, а иногда пожизненный.

    Неспецифические клеточные и общефизиологические реакции.

    Температура

    Гормоны – снижают резистентность, однако соматотропные гормоны повышают резистентность и усиливают воспалительную реакцию.

    Беременное животное заболевает быстрее и заболевание протекает более тяжело.

    Физиологическое состояние выделительной системы – скорость выделения вируса из организма.

    Гуморальные факторы – наличие сывороточных ингибиторов (термостабильных или термолабильных). У каждого вида преобладает свой тип.

    ВОПРОС №44 «ЖИВЫЕ ПРОТИВОВИРУСНЫЕ ВАКЦИНЫ, ИХ СВОЙСТВА, ПРИМЕНЕНИЕ И ОТЛИЧИЯ ОТ ИНАКТИВИРОВАННЫХ ВАКЦИН».

    Живые противовирусные вакцины представляют собой лиофилизированные взвеси вакцинных штаммов вирусов, выращенных в различных биологических системах (КЭ, КК, в лабораторные животные) или используются природно-ослабленные штаммы возбудителя, которые создаются в процессе длительной эпизоотии. Основным свойством является стойкая утрата способности вызывать в организме привитого животного типичное инфекционное заболевание, также обладают способностью «приживаться» в организме животного, т.е размножатся. Пребывание и размножение вакцинного штамма продолжается обычно 5-10дн. до нескольких недель и не сопровождаются клиническими проявлениями, характерными для данной болезни, приводят к формированию иммунитета против инфекционного заболевания. Преимущества: высокая напряженность и длительность создаваемого ими иммунитета, приближающегося к постинфекционному. Возможность для большинства однократного введения. Введение не только подкожно, но и перорально и интерназально. Недостатки: чувствительность к неблагоприятным факторам. Строгие рамки хранения и транспортировки – температура – 4-8С. Недопустимо нарушение вакуума в ампулах с вакцинами. Строгие соблюдения правил асептики. Контроль качества: 1)всесторонние обследование доноров. 2)оценка качества питательной среды и КК на стерильность. 3)Надзор за качеством производственных штаммов вирусов. 4)Создание оптимальных условии для сохранения биоматериалов.

    Инактивированные вакцины создают менее напряженный и продолжительный иммунитет, их надо вводить повторно.

    ВОПРОС №45 «БАКТЕРИОФАГИ, ИХ ЗНАЧЕНИЕ И ОСНОВНЫЕ СВОЙСТВА».

    Бактериофаги (от. Лат. Bacteriophaga) – разрушающий бактерии. Это вирусы, обладающие способностью проникать в бактериальные клетки репродуцироваться в них и вызывать их гибель.

    История открытия бактериофага связана с академиком Гамалеем, наблюдавшим случайный лизис сибиреязвенных бактерий.

    Творт – описал перерождение стафиллококов (1915). Д’Эрель (1917) подробно изучил взаимодействие фага и бактерий дизентерийной палочки и дал агенту название «бактериофаг». В дальнейшем были выделены вирусы грибов, микоплазм и других МО. Поэтому для обозначения этих вирусов употребляется термин «фаг» – пожиратель.

    Структура и морфология фага.

    Фаги состоят из нуклеиновой кислоты ДНК\РНК, окруженной капсидой, содержащей строго ориентированные капсомеры. Крупные фаги имеют головастикообразное строение, имеют головку, воротничок и хвостовой отросток, заканчивающийся 6-угольной базальной пластинкой к которой прикреплены фибриллы. Головка имеет 2 оболочки: наружную и такую внутреннюю мембраны, в которой заключена АК. Средний размер головки 60-100 нм, хвоста 100-200 нм. По морфологии фаги разделены на 6 групп:

    Фаги с длинным отростком, чехол которого сокращается – Т-четные фаги.

    Фаги с длинным отростком, чехол которого не сокращается.

    Фаги с аналогом отростка.

    Фаги с коротким отростком.

    Нитевидные фаги.

    Фаги без отростка.

    Химический состав фага.

    Головка фага содержит одну из нуклеиновых кислот. В оболочке также содержатся липиды, углеводы. Фаги выдерживают давление до 6 тысяч атмосфер. Они устойчивы к действию окружающей среды, сохраняют свою активность в запасных ампулах до 13 лет.

    Быстро погибают при действии кипячения, УФЛ, определенных химических средств (1% фенол, спирт, эфир хлороформ не изменяют фага). Некоторые вещества: тимол, хлороформ, динитрофенол не оказывает влияние на фаги, но убивают бактерии.

    1% раствор формалина инактивирует фаг. Различают фаги: полифаги (лизируют родственные бактерии), монофаги (лизируют родственные бактерии), монофаги (лизируют бактерии одного вида), фаги вызывающие лизис определенного серотипа 1 вида. По типоспецифическим свойствам фаги делят на серотипы. Специальные фаги можно легко адаптировать к родственным бактериям путем пассажирования на бактериях одного вида. Явление бактериофагии легко можно наблюдать как в жидких, так и в плотных питательных средах. Если в чашку с питательной средой засеять культуру и нанести несколько капель фага высокой концентрации, то на этом месте роста не будет – стерильные пятна. По механизму взаимодействия с клетками фаги подразделяются на вирулентные и умеренные.

    Феномен бактериофагии, вызванный умеренными фагами проявляется только в виде фаз адсорбции, проникновения в клетки, репродукции и выделения фага. Весь процесс репродукции идет по типу ДНК-содержащих вирусов. Вирулентные фаги обеспечивают формирование новых фагов и лизис бактерий клетки. Установлено, что в инфицированных фагом бактериях в течение 1 минуты появляется 7-8 частиц фага.

    Схема репродукции.

    1.Адсорбция фага на оболочке МО и растворение ее. Фаги адсорбируются своими жгутиками, эти жгутики прочно соединяются с рецепторами клеточной стенки, в результате чего происходит сокращение фаговой частицы и конец отростка вонзается в оболочку бактериальной клетки и одновременной фаг выделяет лизоцимоподобный фермент, который растворяет оболочку клетки.

    2.Впрыскивание нуклеиновой кислоты внутрь микробной клетки. В микробную клетку впрыскивается вся нуклеиновая кислота и часть белков, чехлик остается на поверхности бактериальной клетки.

    3.Латентная фаза – эклипс-фаза. Фаза способствует развитию ДНК вирусов. В начале синтезируется и-РНК, она дает начало синтезу ранних вирусных белков, которые прекращают клеточный метаболизм и дают начало формированию дочерних нуклеиновых кислот.

    4.Образование новых фаговых частиц. Соединение двух основных фаговых частиц путем заполнения белковой оболочки фага нуклеиновыми фаговыми частицами.

    5.Растворение оболочки бактериальной клетки и выход вновь образованных частиц за пределы клетки. Разрыву клеточной стенки способствуют: сильное увеличение внутриклеточного давления, а с другой стороны действие ферментативных процессов, вызываемых фагами. Количество воспринимаемых фагов различно и колеблется от 1 до 1000 и более.

    Весь процесс репродукции происходит от 3 до 10 часов.

    Лизогения – наряду с вирулентными фагами существуют и умеренные фаги, отличающиеся характером взаимодействия с бактериальной клеткой. Их основная особенность состоит в том, что они способны переходить из вегетативного состояния в неинфекционную форму, названную профагом, неспособную вызывать лизис бактерий. Бактериальные клетки содержащие профаг в хромосоме называются лизогенными, а явление – лизогения. При этом явлении зараженные фагом бактерии не лизируются. Но при искусственном лизисе могут высвободить фаг, способный инфицировать бактерии данного вида. Переход профага в вегетативный фаг происходит не часто. При заражении умеренными фагами 1 часть клеток лизируется с образованием вегетативного фага, а другая часть выживает и становиться лизогенной.

    В лизогенных бактериях ДНК фага интегрируется в ДНК клетки и умеренный фаг преобразуется в профаг, который не обладает литическим свойством.

    Лизогенные бакте6рии образующиеся в результате лизогенизации становятся носителями фага и на длительное время приобретают иммунитет. Эта связь прочная и нарушается при воздействии на бактерию индуцирующих агентов. Это УФ лучи, ионизирующая радиация, химические мутагены. Под влиянием указанных факторов профаг переводится в автономное состояние, происходит дезинтеграция.

    Лизогенизация бактерий сопровождается изменением их свойств (морфологических, культуральных и биологических свойств). Нетоксичные штаммы становятся токсигенными. Изменение свойств бактерий – фаговая конверсия. Лизогенные бактерии – наиболее удобные модели для изучения взаимодействия вирусов и клетки.

    В настоящее время умеренные фаги широко используются для изучения вопросов генетики, с помощью которой можно более точно дифференцировать процессы изменчивости. Под влиянием радиации увеличивается число фаговых частиц, продуцируемых клетками лизогенных бактерий.

    Практическое использование фагов – фаги используются для титрования бактерий, лечения и профилактики ряда инфекционных заболеваний, используются для определения дозы радиации на космических кораблях.

    ВОПРОС №46 «ЛАБОРАТОРЫНЕ ЖИВОТНЫЕ, ЦЕЛИ И МЕТОДЫ ИХ ИСПОЛЬЗОВАНИЯ В ВИРУСОЛОГИИ».

    В связи с тем, что вирусы могут размножаться только в живых клетках, на самых ранних этапах развития вирусологии широко применяли культивирование вирусов в организме лабораторных животных, специально выращиваемых для проведения на них исследований.

    Используют: 1)для обнаружения вируса в ПМ 2)первичного выделения вируса из ПМ 3)накопления вирусной массы 4)поддержания вируса в лаборатории в активном сост. 5)титровании вируса 6)в качестве тест-объекта в РН 6)получение гипериммунных сывороток. Используемые животные: белые мыши (бешенство, ящур), белые крысы (грипп свиней, б. Ауески), морские свинки (бешенство, ящур, чума плотоядных). Кролики (бешенство, миксомы кроликов).

    Требования к лабораторным животным – животное должно быть чувствительным к данному вирусу; возраст его имеет большое значение для культивирования многих вирусов. Большинство вирусов лучше размножается в организме молодых и даже новорожденных животных; стандартная чувствительность достигается подбором животных определенного возраста и одинаковых по массе. По чувствительности наибольшей стандартностью обладают так называемые линейные животные, полученные в результате близкородственного скрещивания в течении ряда поколений; лабораторные животные должны быть здоровы. Животные, поступающие в виварий вирусологической лаборатории, должны быть привезены из благополучного по инфекционным заболеваниям хозяйства. Их содержат на карантине и ведут клиническое наблюдение. При наличии заболевания их уничтожают.

    Животных размещают так, чтобы с одной стороны, было обеспечено функционирование всех систем организма в пределах физиологической нормы, с другой – исключено взаимное перезаражение и распространение инфекции за пределы вивария. Для животных разных видов применяют разные способы индивидуальной метки. Для крупных животных и кур используют металлические бирки со штампованным номером. При использовании в эксперименте небольшой группы животных и при непродолжительном сроке его можно выстригать шерсть знаками на спине, бедрах. Метка белых мышей, белых крыс может быть проведена ампутацией отдельных пальцев на передних или задних конечностях. Часто пользуются методом нанесения цветных пятен на непигментированную шерсть. Заражение лабораторных животных.

    1. подкожно – спина.

    2. Внутрикожно – пятка

    3. Внутримышечно – бедро

    4. Внутривенно – в хвост (предварительно растерев горячей водой и пережав)

    5. Интранозально – капля в нос (предварительно дают слабый эфирный наркоз, что бы предупредить чихание)

    6. Интероцеребрально – череп аккуратно просверливается иголочкой, не нажимать, капля уходит сама.

    Все поверхности предварительно смазывают йодированным спиртом.

    Препарирование лаб. животных (на примере белой мыши)

    Кожа смазывается дезинфектором.

    Производится разрез по linea alba.

    Вскрытие грудины – берутся легкие и помещаются в пробирку №1

    Вскрытие брюшной полости – берутся печень, селезенка, почка и помещаются в пробирку №2.

    Производится вскрытие черепной коробки. Берется головной мозг, делаются срезы 4-х слоев, кусочки помещаются на фильтровальную бумагу и делаются отпечатки на стекло.

    ВОПРОС №47 «СТРОЕНИЕ РАЗВИВАЮЩЕГОСЯ КУРИНОГО ЭМБРИОНА. ОСНОВНЫЕ ЗАДАЧИ, РЕШАЕМЫЕ МЕТОДОМ ЗАРАЖЕНИЯ КЭ И ЕГО ПРЕИМУЩЕСТВА ПЕРЕД КУЛЬТИВИРОВАНИЕМ ВИРУСОВ НА ЛАБОРАТОРНЫХ ЖИВОТНЫХ.

    Используют КЭ в вирусологии в основном для тех же целей, что и ЛЖ: обнаружения в патматериале активного вируса биопробой; первичного выделения вируса; поддержания вирусов в лаборатории; титрования вирусов; накопления вируса для лабораторных исследований и получения вакцин; как тест-объект в реакции нейтрализации.

    Строение: 1.Скорлупа 2.Подскорлупная оболочка 3.Воздушная камера 4.Аллантоисная полость 5.Желточный мешок 6.Альбуминный мешок 7.ХАО – хорион-аллантоисная оболочка 8.Амниотическая полость 9.Эмбрион 10.Канатик (соединение желточного мешка с пуповиной). С 5-12день КЭ могут использоваться для заражения

    1) Скорлупа и подскорлупная оболочка служит хорошей защитой от факторов внешней среды. 2)КЭ содержат субстрат для выращивания вируса. 3)КЭ устойчивы к воздействиям связанных с выделением исследуемого материала. 4)КЭ легко доступны, экологичны, не требуют ухода, кормления, не образуют АТ.

    6 методов заражения КЭ: 1)Заражение в аллантоисную полость (грипп, болезнь Ньюкасла). КЭ фиксируют вертикально тупым концом вверх, на стороне зародыша на 5-6мм выше границы воздушной камеры делают отверстие 1мм. Иглу вводят параллельно продольной оси на глубину 10-12 мм. 2)на ХАО (оспа, чума плотоядных): а)Ч/з естественную воздушную камеру. КЭ в штатив тупым концом вверх, в скорлупе против центра воздушной камеры окно 15-20мм. Снимают подскорлупную оболочку. На ХАО наносят 0,2 мм суспензии. Отверст. лейкопластырем. б)Ч/з искусственную воздушную камеру. Штатив горизонтально зародышем вверх. Делают 2 отверстия: над центром воздушной камеры, другое 0,2-0,5см сбоку, со стороны зародыша. Из первого зародыша отсасывают воздух, образуется искусственная воздушная камера, дном которого является ХАО, на него наносят инфекционную жидкость, заклеивают лейкопластырем. 3)В желточный мешок (хламидий, б. Марека): а)КЭ помещают в штатив вертикально. Отверстие над центром воздушной камеры, иглу на 3,5-4см под углом 45, противоположно месту нахождения зародыша. б)аналогичный путь заражения осуществляется на горизонтально укрепленном штативе КЭ; при этом зародыш находится внизу, а желток над ним. 4)В амниотическую полость (грипп, болезнь Ньюкасла): закрыт способ – зародыш. вверх. Иглу вводят затупленным концом по направлению к зародышу откр. способ – над воздушной полостью отверстие 1,5-2,5см. Удаляют подскорлупную оболочку. Пинцет продавливают ХАО по направлению к зародышу. Затем амниотическую оболочку вместе с ХАО и подтягивают к окну, водят туда суспензию. Отпускают. Лейкопластырь. 5)Заражение в тело зародыша. 6)в кровеносные сосуды.

    ВОПРОС №48 «ВИДЫ КУЛЬТУР КЛЕТОК И ИХ ИСПОЛЬЗОВАНИЕ В ВИРУСОЛОГИИ. КРАТКАЯ ХАРАКТЕРИСТИКА КАЖДОГО ВИДА».

    Культура клеток (КК) – это клетки многоклеточного организма, живущие и размножающиеся в искусственных условиях вне организма. Методика культивирования особенно успешно стала развиваться после 40-х годов. Этому способствовали следующие события: открытие антибиотиков, предотвращающих бактериальное заражение КК, открытие Хангом и Эндерсом способности вирусов вызывать специфическую деструкцию клеток. Дульбекко и Фогт (1952) предложили методику трипсинизации тканей и получения однослойных КК. Применяют следующие КК: 1) ПТКК – клетки, полученные непосредственно из органов или тканей организма, растущие in vitro в один слой. КК можно получить практически из любого органа или ткани человека или животного. Лучше это удается сделать из эмбриональных органов, т.к. клетки эмбрионов обладают более высокой потенцией роста. Чаще всего для получения их используют почки, легкие, кожу, тимус, тестикулы. Для получения первичных клеток от здорового животного не позднее 2-3 часов после убоя берут соответствующие органы или ткани, измельчают, обрабатывают трипсином, панкреатином, коллагеназой. Ферменты разрушают межклеточные вещества, полученные при этом отдельные клетки суспендируют в питательной среде и культивируют на внутренней поверхности пробирок или матрасов в термостате при 37С. Клетки прикрепляются к стеклу и начинают делится. На стекле формируется слой толщиной в одну клетку, обычно через 3-5 дней. Питательную среду меняют по мере загрязнения ее продуктами жизнедеятельности клеток. Монослой сохранят жизнеспособность в течение 7-21 дня. При культивировании вирусов в КК удается получать препараты с высоким титром вируса, что важно при получении АГ и вакцин. 2) Субкультуры – их часто используют и получают из первичных клеток, выращенных в матрасах, путем снятия их со стекла раствором версена или трипсина, ресуспендирования в новой питательной среде и пересева на новые матрасы или пробирки. Через 2-3 суток формируется монослой. Они по чувствительности не уступают ПТКК, более экономичны. 3) Перевиваемые КК – клетки, способные к размножению вне организма неопределенно длительное время. В лаборатория их поддерживают путем пересевов из одного сосуда в другой (при условии замены питательной среды). Получают их из первичных КК с повышенной активностью роста путем длительных пересевов в определенном режиме культивирования. Клетки перевиваемых культур имеют одинаковую форму, гетероплоидный набор хромосом, стабильны в условиях роста in vitro, некоторые из них обладают онкогенной активностью. «+» перед первичными – проще готовить, заранее можно проверить на наличие латентных вирусов и микрофлоры; клональные линии обеспечивают более стандартные условия для размножения вирусов, чем первичные. Большинство перевиваемых клеток обладает более широким спектром чувствительности к вирусам, чем соответствующие первичные культуры. Но они склонны к злокачественному перерождению. 4)Диплоидные КК – морфологически однородная популяция клеток, стабилизированная в процессе культивирования in vitro, имеющая ограниченный срок жизни, характеризующаяся 3 фазами роста, сохраняющая в процессе пассирования кариотип свойственный исходной ткани, свободная от контаминантов и не обладающая туморогенной активностью при трансплантации хомячкам. Их тоже получают из первичных клеток. В отличие от них имеют ограниченные возможности пассирования. Максимальное число пассажей 50 -\+ 10, затем количество делящихся клеток резко уменьшается и они гибнут. Преимущества перед перевиваемыми КК – 10-12 дней могут быть в жизнеспособном состоянии без смены питательной среды; при смене среды один раз в неделю остаются жизнеспособны в течение 4 недель; особенно пригодны для длительного культивирования вирусов, у них сохранена чувствительность исходной ткани к вирусам. 5)Суспензионные КК – перевиваемые культуры клеток в суспензии.

    ВОПРОС №49 « ПЕРВИЧНО-ТРИПСИНИЗИРОВАННЫЕ КУЛЬТУРЫ КЛЕТОК. ИХ ДОСТОИНСВА И НЕДОСТАТКИ. ПРИМЕНЕНИЕ В ВИРУСОЛОГИЧЕСКИХ ИССЛЕДОВАНИЯХ».

    ПТКК – клетки, полученные непосредственно из органов или тканей организма, растущие in vitro в один слой. КК можно получить практически из любого органа или ткани человека или животного. Лучше это удается сделать из эмбриональных органов, т.к. клетки эмбрионов обладают более высокой потенцией роста. Чаще всего для получения их используют почки, легкие, кожу, тимус, тестикулы. Для получения первичных клеток от здорового животного не позднее 2-3 часов после убоя берут соответствующие органы или ткани, измельчают, обрабатывают трипсином, панкреатином, коллагеназой. Ферменты разрушают межклеточные вещества, полученные при этом отдельные клетки суспендируют в питательной среде и культивируют на внутренней поверхности пробирок или матрасов в термостате при 37С. Клетки прикрепляются к стеклу и начинают делится. На стекле формируется слой толщиной в одну клетку, обычно через 3-5 дней. Питательную среду меняют по мере загрязнения ее продуктами жизнедеятельности клеток. Монослой сохранят жизнеспособность в течение 7-21 дня. При культивировании вирусов в КК удается получать препараты с высоким титром вируса, что важно при получении АГ и вакцин. С помощью метода КК были решены некоторые теоретические вопросы – о взаимодействии вируса с клеткой, месте репродукции вирусов, механизме антивирусной иммунизации. В настоящее время КК применяют для выделения вирусов из патматериала, их индикации, идентификации, для постановки реакции нейтрализации, определения титра вирусов, для приготовления диагностических АГ и вакцин, в качестве тест – объектов в реакции нейтрализации.

    ВОПРОС №50 «ПИТАТЕЛЬНЫЕ СРЕДЫ И РАСТВОРЫ, ИСПОЛЬЗУЕМЫЕ В ВИРУСОВЛОГИИ. ТРЕБОВАНИЯ К ПОСУДЕ ДЛЯ КУЛЬТИВИРОВАНИЯ КК, ЕЕ ОБРАБОТКА».

    Наиболее широко используют при работе с КК растворы Хенкса и Эрла, которые готовят на бидистиллированной воде с добавлением различных солей и глюкозы. Эти сбалансированные солевые растворы используют для приготовления всех питательных сред, т.к. они обеспечивают сохранение рН, осмотическое давление в клетках и соответствующую концентрацию необходимых неорганических веществ. Их же применяют для отмывания от ростовых сред, разведений вируса и другого. При культивировании клеток применяют диспергирующие растворы трипсина и версена. Раствор трипсина используют для разделения кусочков тканей на отдельные клетки и для снятия слоя клеток со стекла. Раствор версена – используют для снятия клеток со стекла. Питательные среды (далее ПС) – различают: 1)естественные среды, которые состоят из смеси солевого раствора, сыворотки крови, тканевого экстракта, коровьей амниотической жидкости и др. Количество компонентов варьирует. Используют их редко. 2)искусственные ПС – ферментативные гидролизаты различных белковых продуктов: гидролизат лактальбумина, мышечный ферментативный гидролизат и др. Из синтетических сред наиболее широкое применение нашли среда 199 и среда Игла. Во все питательные среды и некоторые солевые растворы добавляют индикатор феноловый красный для определения концентрации водородных ионов. Для уничтожения микрофлоры перед использованием в среды добавляют АБ: пенициллин и стрептомицин по 100ЕД\мл. Все ПС делят на 2 группы: ростовые – обеспечивают жизнь и размножение клеток; поддерживающие – обеспечивающие жизнедеятельность клеток, но не их размножение (они не содержат сыворотки крови). Посуда – качество посуды имеет важное значение для успешного культивирования клеток вне организма. Она д\б стерильной, обезжиренной, не обладать токсическим действием. Для культивирования клеток используют пробирки, матрасы на 50, 100, 250, 500, 1000, 1500 мл, роллерные колбы на 500, 1000, 2000 мл, различные пипетки, флаконы для ПС и растворов, колбы различной вместимости. Обработка стеклянной посуды состоит из нескольких этапов: 1)инфицированную посуду погружают в 2-3% раствор NaOH на 5-6 часов; 2) споласкивают в 3-4 сменах водопроводной воды; 3) замачивают в 0,3-0,5% растворе порошка; 4) тщательно моют с помощью ерша в теплом растворе порошка; 5) споласкивают в нескольких сменах водопроводной воды; 6)споласкивают в дистиллированной воде, содержащей 0,5% HCl; 7)споласкивают 4-5 раз водопроводной водой и в 3 сменах дистиллированной воды; 8) сушат в сушильном шкафу; 9)монтируют и стерилизуют в сушильном шкафу или автоклавируют.

    ВОПРОС №51 «ПРИНЦИП ЗАРАЖЕНИЯ КУЛЬТУР КЛЕТОК ВИРУССОДЕРЖАЩИМ МАТЕРИАЛОМ. ИНДИКАЦИЯ ВИРУСОВ В КУЛЬТУРЕ КЛЕТОК».

    Для заражения отбирают пробирки (матрасы) со сплошным клеточным монослоем, просматривая их под малым увеличением микроскопа. Ростовую питательную среду сливают, клетки 1-2 раза промывают раствором Хенкса, чтобы удалить сывороточные АТ и ингибиторы. В каждую пробирку вносят по 0,1-0,2 мл вируссодержащего материала и покачиванием распределяют его равномерно по слою клеток. Оставляют на 1-2 часа при 22-37С для адсорбции вируса на поверхности клеток. Вируссодержащий материал удаляют из емкостей и наливают поддерживающую среду. Для индикации существуют следующие основные методы индикации вируса в КК: по цитопатическому эффекту или цитопатическому действию; по положительной реакции гемадсорбции; по образованию бляшек; по обнаружению внутриклеточных включений; по выявлению вирусов в реакции иммунофлуоресценции; по обнаружению интерференции вирусов; по подавлению метаболизма клеток (цветная проба); электронной микроскопией. Выявление специфической дегенерации клеток (по ЦПД) – простым признаком являются дегенеративных изменения в клетках (проявление ЦПД). Наступившие видимы изменения в клетке называются цитопатические изменения. Эти изменения в инфицированных клетках зависят от дозы и биологических свойств исследуемого вируса время проявление ЦПД и его особенности иногда позволяет провести идентификацию выделенных вирусов. При инфицирования КК средними дозами вируса характер этих изменений специфичен и может быть классифицирован на группы: очаговое мелкозернистое перерождение, мелкозернистое перерождение по всему монослою, очаговое гроздевидное скопление округлых клеток, равномерная зернистость, объединение клеток в гигантские многоядерные симпласты и синцитии. Степень дегенерации оценивают по 4 бальной системе.

    Иногда наблюдают отсутствие ЦПД, но это считают за отсутствие вируса нельзя и потому проводят 2-3 слепых пассажа и на 2-3 пассаже вирусы могут проявлять желаемые свойства.

    ВОПРОС №52 «МЕТОДЫ ОБНАРУЖЕНИЯ ВИРИОНОВ ВИРУСОВ И ВИРУСНЫХ ТЕЛЕЦ-ВКЛЮЧЕНИЙ, ИХ ПРАКТИЧЕСКЕ ЗНАЧЕНИЕ».

    Обычно удается рассмотреть вирионы вирусов и установить их структуру с помощью электронной микроскопии, позволяющей различать объекты размерами до 0,2-0,4 нм. Обнаружение с помощью электронной микроскопии в материале от больных животных вирионов может служить доказательством наличия вирусов в этом материале и в некоторых случаях используется для диагностики вирусных болезней. Но этот метод технически сложный и дорогостоящий, не позволяет точно идентифицировать обнаруженный вирус. В световой микроскоп удается увидеть только вирионы оспенных вирусов на пределе видимости. Способность к окраске теми или иными красителями, размеры, форма, структура, местоположение в клетке телец-включений, образованных разными вирусами, неодинаковые, но специфичные для каждого вируса. Поэтому обнаружение в материале от больных животных внутриклеточных телец-включений с определенными характеристиками позволяет судить о том, каким вирусом они образованы, а значит, и о присутствии этого вируса в исследуемом материале. Для обнаружения телец-включений готовят мазки или отпечатки (посмертно или прижизненно), которые подвергают специальным методам окраски с последующей микроскопией. Для телец-включений, образуемых разными вирусами, методы окраски различны. Разработано много рецептов окраски. Среди них есть и универсальные, к которым относится окраска гематоксилин-эозином.