К функциям отношения не относится. Функции. Операции над бинарными отношениями

функция ". Начнем с частного, но важного случая функций, действующих из в .

Если мы понимаем, что такое отношение , то понять, что такое функция совсем просто. Функция – это частный случай отношения. Каждая функция является отношением, но не каждое отношение является функцией. Какие же отношения являются функциями? Какое дополнительное условие должно выполняться, чтобы отношение являлось функцией?

Вернемся к рассмотрению отношения , действующего из области определения в область значений . Рассмотрим элемент из . Этому элементу соответствует в элемент , такой, что пара принадлежит , что часто записывают в виде: (например, ). Отношению могут принадлежать и другие пары, первым элементом которых может выступать элемент . Для функций такая ситуация невозможна.

Функция – это отношение , в котором элементу из области определения соответствует единственный элемент из области значений.

Отношение "иметь брата", представленное на рис.1, функцией не является. Из точки в области определения идут две дуги в разные точки области значений, следовательно это отношение функцией не является. Содержательно, Елена имеет двух братьев, так что однозначного соответствия между элементом из и элементом из нет.

Если же рассмотреть отношение на тех же множествах "иметь старшего брата", то такое отношение функцией является. У каждого человека братьев может быть много, но только один из них является старшим братом. Функциями являются и такие родственные отношения как "отец" и "мать".

Обычно, когда речь идет о функциях, то для общего обозначения функции используется буква , а не , как в случае отношений, и общая запись имеет привычный вид: .

Рассмотрим хорошо известную функцию . Областью определения этой функции является вся действительная ось: . Область значений функции замкнутый интервал на действительной оси: . График этой функции синусоида, каждой точке на оси соответствует единственная точка графика .

Взаимно однозначная функция

Пусть отношение задает функцию . Что можно сказать об обратном отношении ? Является ли оно также функцией? Совсем не обязательно. Рассмотрим примеры отношений, являющихся функциями.

Для отношения "имеет старшего брата" обратное отношение – это отношение "имеет брата или сестру". Конечно же, это отношение функцией не является. У старшего брата может быть много сестер и братьев.

Для отношений "отец" и "мать" обратным отношением является отношение "сын или дочь", которое также не является функцией, поскольку детей может быть много.

Если рассмотреть функцию , то обратное отношение функцией не является, поскольку одному значению соответствует сколь угодно много значений . Чтобы рассматривать

Отображение f множества X в множество Y считается заданным, если каждому элементу x из X сопоставлен ровно один элемент y из Y, обозначаемый f(x).

Множество X называется областью определения отображения f, а множество Y – областью значений . Множество упорядоченных пар

Г f = {(x, y) | x∈X, y∈Y, y = f(x)}

называют графиком отображения f. Непосредственно из определения вытекает, что график отображения f является подмножеством декартова произведения X×Y:

Строго говоря, отображение – это тройка множеств (X, Y, G) такая, что G⊂ X×Y, и каждый элемент x из X является первым элементом ровно одной пары (x, y) из G. Обозначая второй элемент такой пары через f(x), получаем отображение f множества X в множество Y. При этом G=Г f . Если y=f(x), мы будем писать f:x→y и говорить, что элемент x переходит или отображается в элемент y; элемент f(x) называется образом элемента x относительно отображения f. Для обозначения отображений мы будем использовать записи вида f: X→Y.

Пусть f: X→Y – отображение множества X в множество Y, а A и B – подмножества множеств X и Y соответственно. Множество f(A)={y| y=f(x) для некоторого x∈A} называется образом множества A. Множество f − 1 (B)={x| f(x) ∈B}

называется прообразом множества B. Отображение f: A→Y, при котором x→f(x) для всех x∈A, называется сужением отображения f на множество A; сужение будет обозначаться через f| A .

Пусть имеются отображения f: X→Y и g: Y→Z. Отображение X→Z, при котором x переходит в g(f(x)), называется композицией отображений f и g и обозначается через fg .

Отображение множества X в X, при котором каждый элемент переходит сам в себя, x→x , называется тождественным и обозначается через id X .

Для произвольного отображения f: X→Y имеем id X ⋅f = f⋅id Y .

Отображение f: X→Y называется инъективным , если для любых элементов из и следует, что . Отображение f: X→Y называется сюръективным , если всякий элемент y из Y является образом некоторого элемента x из X, то есть f(х)=у. Отображение f: X→Y называется биективным , если оно одновременно инъективно и сюръективно. Биективное отображение f: X→Y обратимо. Это означает, что существует отображение g: Y→X, называемое обратным к отображению f, такое, что g(f(x))=x и f(g(y))=y для любых x∈X, y∈Y. Отображение, обратное к отображению f, обозначается через f − 1 .

Обратимое отображение f: X→Y устанавливает взаимно однозначное соответствие между элементами множеств X и Y. Инъективное отображение f: X→Y устанавливает взаимно однозначное соответствие между множеством X и множеством f(X).


Примеры . 1) Функция f:R→R >0, f (x)=e x , устанавливает взаимно однозначное соответствие множества всех действительных чисел Rс множеством положительных действительных чисел R >0 . Обратным к отображению f является отображение g:R >0 →R, g(x)=ln x.

2) Отображение f:R→R ≥ 0 , f(x)=x 2 , множества всех действительных Rна множество неотрицательных чисел R ≥ 0 сюръективно, но не инъективно, и поэтому не является биективным.

Свойства функции:

1. Композиция двух функций есть функция, т.е. если , то .

2. Композиция двух биективных функций есть биективная функция, если , то .

3. Отображение имеет обратное отображение тогда и

тогда и только тогда, когда f –биекция, т.е. если , то .

Определение. n – местным отношением, или n – местным предикатом Р, на множествах А 1 ;А 2 ;…;А n называется любое подмножество декартова произведения .

Обозначение n - местного отношения P(x 1 ;x 2 ;…;x n). При n=1 отношение Р называется унарным и является подмножеством множества А 1 . Бинарным (двуместным при n=2) отношением называется множество упорядоченных пар.

Определение. Для любого множества А отношение называется тождественным отношением, или диагональю, а - полным отношением, или полным квадратом.

Пусть Р – некоторое бинарное отношение. Тогда областью определения бинарного отношения Р называется множество для некоторого y}, а областью значений – множество для некоторого x}. Обратным к Р отношением называется множество .

Отношение Р называется рефлексивным, если оно содержит все пары вида (x,x) для любого x из X. Отношение Р называется антирефлексивным , если оно не содержит ни одной пары вида (x,x). Например, отношение x≤y рефлексивно, а отношение x

Отношение Р называется симметричным , если вместе с каждой парой (x,y) оно содержит также и пару (y,x). Симметричность отношения Р означает, что Р=Р –1 .

Отношение Р называется антисимметричным , если (x;y)и (y;x), то x=y.

Отношение R называется транзитивным, если вместе с любыми парами (x,y) и (y,z) оно содержит также и пару (x,z), то есть из xРy и yРz следует xРz.

Свойства бинарных отношений:

Пример. Пусть А={x/x – арабская цифра}; Р={(x;y)/x,yA,x-y=5}. Найти D;R;P -1 .

Решение. Отношение Р можно записать в виде Р={(5;0);(6;1);(7;2);(8;3);(9;4)}, тогда для него имеем D={5;6;7;8;9}; Е={0;1;2;3;4}; P -1 ={(0;5);(1;6);(2;7);(3;8);(4;9)}.

Рассмотрим два конечных множества и бинарное отношение . Введем матрицу бинарного отношения Р следующим образом: .

Матрица любого бинарного отношения обладает свойствами:

1. Если и , то , причем сложение элементов матрицы осуществляется по правилам 0+0=0; 1+1=1; 1+0=0+1=1, а умножение почленно обычным образом, т.е. по правилам 1*0=0*1=0; 1*1=1.

2. Если , то , и матрицы умножаются по обычному правилу умножения матриц, но произведение и сумма элементов при умножении матриц находится по правилам п.1.

4. Если , то и

Пример. Бинарное отношение изображено на рис.2 Его матрица имеет вид .

Решение. Пусть , тогда ;

Пусть Р – бинарное отношение на множестве А, . Отношение Р на множестве А называется рефлексивным, если , где звездочками обозначены нули или единицы. Отношение Р называется иррефлексивным, если . Отношение Р на множестве А называется симметричным , если для и для из условия следует, что . Это значит, что . Отношение Р называется антисимметричным , если из условий и следует, что x=y, т.е. или . Это свойство приводит к тому, что у матрицы все элементы вне главной диагонали будут нулевыми (на главной диагонали тоже могут быть нули). Отношение Р называется транзитивным , если из и следует, что , т.е. .

Пример. Дано отношение Р и .Здесь на главной диагонали матрицы стоят все единицы, следовательно, Р – рефлексивно. Матрица несимметрична, тогда несимметрично и отношение Р

Т.к. не все элементы, стоящие вне главной диагонали, нулевые, то отношение Р не антисимметрично.

Т.е. , следовательно отношение Р – нетранзитивно.

Рефлексивное, симметричное и транзитивное отношение называется отношением эквивалентности . Для обозначения отношений эквивалентности принято использовать символ ~. Условия рефлексивности, симметричности и транзитивности можно записать так:

Пример. 1) Пусть X – множество функций, определенных на всей числовой прямой. Будем считать, что функции f и g связаны отношением ~, если они принимают одинаковые значения в точке 0, то есть f(x)~g(x), если f(0)=g(0). Например, sinx~x, e x ~cosx. Отношение ~ рефлексивно (f(0)=f(0) для любой функции f(x)); симметрично (из f(0)=g(0) следует, что g(0)=f(0)); транзитивно (если f(0)=g(0) и g(0)=h(0), то f(0)=h(0)). Следовательно, ~ является отношением эквивалентности.

2) Пусть ~ – отношение на множестве натуральных чисел, при котором x~y, если x и y дают одинаковые остатки при делении на 5. Например, 6~11, 2~7, 1~6. Легко видеть, что это отношение рефлексивно, симметрично и транзитивно и, значит, является отношением эквивалентности.

Отношением частичного порядка называют бинарное отношение на множестве, если оно рефлексивно, антисимметрично, транзитивно, т.е.

1. - рефлексифность;

2. - антисимметричность;

3. - транзитивность.

Отношением строгого порядка называется бинарное отношение на множестве, если оно антирефлексивно, антисимметрично, транзитивно. Оба эти отношения называются отношениями порядка . Множество, на котором задано отношение порядка, может быть: полностью упорядоченным множеством или частично упорядоченным . Частичный порядок важен в тех случаях, когда мы хотим как-то охарактеризовать старшинство, т.е. решить при каких условиях считать, что один элемент множества превосходит другой. Частично упорядоченное множество называется линейно упорядоченным , если в нем нет несравнимых элементов, т.е. выполняется одно из условий или . Например, множества с естественным порядком на них являются линейно упорядоченными.

Отношения. Основные понятия и определения

Определение 2.1. Упорядоченной парой <x , y > называется совокупность двух элементов x и y , расположенных в определенном порядке.

Две упорядоченные пары <x , y > и <u , v> равны межу собой тогда и только тогда, когда x = u и y = v.

Пример 2.1 .

<a , b >, <1, 2>, <x , 4> – упорядоченные пары.

Аналогично можно рассматривать тройки, четверки, n -ки элементов <x 1 , x 2 , … x n >.

Определение 2.2. Прямым (или декартовым )произведением двух множеств A и B называется множество упорядоченных пар, таких, что первый элемент каждой пары принадлежит множеству A , а второй – множеству B :

A ´ B = {<a , b >, ç a Î А и b Ï В }.

В общем случае прямым произведением n множеств А 1 , А 2 ,… А n называется множество А 1 ´ А 2 ´ …´ А n , состоящее из упорядоченных наборов элементов <a 1 , a 2 , …, a n > длины n , таких, что i- ый a i принадлежит множеству А i , a i Î А i .

Пример 2.2 .

Пусть А = {1, 2}, В = {2, 3}.

Тогда A ´ B = {<1, 2>, <1, 3>,<2, 2>,<2, 3>}.

Пример 2.3 .

Пусть А = {x ç0 £ x £ 1} и B = {y ç2 £ y £ 3}

Тогда A ´ B = {< x , y >, ç0 £ x £ 1и2 £ y £ 3}.

Таким образом, множество A ´ B состоит из точек, лежащих внутри и на границе прямоугольника, образованного прямыми x = 0 (ось ординат), x = 1, y = 2и y = 3.

Французский математик и философ Декарт впервые предложил координатное представление точек плоскости. Это исторически первый пример прямого произведения.

Определение 2.3. Бинарным (или двуместным )отношением r называется множество упорядоченных пар.

Если пара <x , y > принадлежит r , то это записывается следующим образом: <x , y > Î r или, что то же самое, xr y .

Пример2.4 .

r = {<1, 1>, <1, 2>, <2, 3>}

Аналогично можно определить n -местное отношение как множество упорядоченных n -ок.

Так как бинарное отношение – множество, то способы задания бинарного отношения такие же, как и способы задания множества (см. разд. 1.1). Бинарное отношение может быть задано перечислением упорядоченных пар или указанием общего свойства упорядоченных пар.

Пример 2.5 .

1. r = {<1, 2>, <2, 1>, <2, 3>} – отношение задано перечислением упорядоченных пар;

2. r = {<x , y > çx + y = 7, x , y – действительные числа} – отношение задано указанием свойства x + y = 7.

Кроме того, бинарное отношение может быть задано матрицей бинарного отношения . Пусть А = {a 1 , a 2 , …, a n } – конечное множество. Матрица бинарного отношения C есть квадратная матрица порядка n , элементы которой c ij определяются следующим образом:

Пример 2.6 .

А = {1, 2, 3, 4}. Зададим бинарное отношение r тремя перечисленными способами.

1. r = {<1, 2>, <1, 3>, <1, 4>, <2, 3>, <2, 4>, <3, 4>} – отношение задано перечислением всех упорядоченных пар.

2. r = {< a i , a j > ça i < a j ; a i , a j Î А } – отношение задано указанием свойства "меньше" на множестве А .

3. – отношение задано матрицей бинарного отношения C .

Пример 2.7 .

Рассмотрим некоторые бинарные отношения.

1. Отношения на множестве натуральных чисел.

а) отношение £ выполняется для пар <1, 2>, <5, 5>, но не выполняется для пары <4, 3>;

б) отношение "иметь общий делитель, отличный от единицы" выполняется для пар <3, 6>, <7, 42>, <21, 15>, но не выполняется для пары <3, 28>.

2. Отношения на множестве точек действительной плоскости.

а) отношение "находиться на одинаковом расстоянии от точки (0, 0)" выполняется для точек (3, 4) и (–2, Ö21), но не выполняется для точек (1, 2) и (5, 3);

б) отношение "быть симметричным относительно оси OY " выполняется для всех точек (x , y ) и (–x , –y ).

3. Отношения на множестве людей.

а) отношение "жить в одном городе";

б) отношение "учиться в одной группе";

в) отношение "быть старше".

Определение 2.4. Областью определения бинарного отношения r называется множество D r = {x çсуществует y, что xr y}.

Определение 2.5. Областью значений бинарного отношения r называется множество R r = {y çсуществует x, что xr y}.

Определение 2.6. Областью задания бинарного отношения r называется множество M r = D r ÈR r .

Используя понятие прямого произведения, можно записать:

r Î D r ´ R r

Если D r = R r = A , то говорят, что бинарное отношение r задано на множестве A .

Пример 2.8 .

Пусть r = {<1, 3>, <3, 3>, <4, 2>}.

Тогда D r = {1, 3, 4}, R r = {3, 2}, M r = {1, 2, 3, 4}.

Операции над отношениями

Так как отношения являются множествами, то все операции над множествами справедливы для отношений.

Пример 2.9 .

r 1 = {<1, 2>, <2, 3>, <3, 4>}.

r 2 = {<1, 2>, <1, 3>, <2, 4>}.

r 1 È r 2 = {<1, 2>, <1, 3>, <2, 3>, <2, 4>, <3, 4>}.

r 1 Ç r 2 = {<1, 2>}.

r 1 \ r 2 = {<2, 3>, <3, 4>}.

Пример 2.10 .

Пусть R – множество действительных чисел. Рассмотрим на этом множестве следующие отношения:

r 1 – " £ "; r 2 – " = "; r 3 – " < "; r 4 – " ³ "; r 5 – " > ".

r 1 = r 2 È r 3 ;

r 2 = r 1 Ç r 4 ;

r 3 = r 1 \ r 2 ;

r 1 = ;

Определим еще две операции над отношениями.

Определение 2.7. Отношение называется обратным к отношению r (обозначается r – 1), если

r – 1 = {<x , y > ç< y, x > Î r }.

Пример 2.11 .

r = {<1, 2>, <2, 3>, <3, 4>}.

r – 1 = {<2, 1>, <3, 2>, <4, 3>}.

Пример 2.12 .

r = {<x , y > ç x y = 2, x , y Î R }.

r – 1 = {<x , y > ç< y, x > Î r } = r – 1 = {<x , y > çy x = 2, x , y Î R } = {<x , y > ç– x + y = 2, x , y Î R }.

Определение 2.8. Композицией двух отношений r и s называется отношение

s r = {<x , z > çсуществует такое y , что <x , y > Î r и < y, z > Îs }.

Пример 2.13 .

r = {<x , y > çy = sinx }.

s = {<x , y > çy = Öx }.

s r = {<x , z > çсуществует такое y , что <x , y > Î r и < y, z > Îs } = {<x , z > çсуществует такое y , что y = sinx и z = Öy } = {<x , z > ç z = Ösinx }.

Определение композиции двух отношенийсоответствует определению сложной функции:

y = f (x ), z = g (y ) Þ z = g (f (x )).

Пример 2.14 .

r = {<1, 1>, <1, 2>, <1, 3>, <3, 1>}.

s = {<1, 2>, <1, 3>, <2, 2>, <3, 2>, <3, 3>}.

Процесс нахождения s r в соответствии с определением композиции удобно изобразить таблицей, в которой реализуется перебор всех возможных значений x , y , z . для каждой пары <x , y > Î r нужно рассмотреть все возможные пары < y, z > Îs (табл. 2.1).

Таблица 2.1

<x , y > Î r < y, z > Îs <x , z > Îs r
<1, 1> <1, 1> <1, 2> <1, 3> <1, 3> <3, 1> <3, 1> <1, 2> <1, 3> <2, 2> <3, 2> <3, 3> <1, 2> <1, 3> <1, 2> <1, 3> <1, 2> <1, 2> <1, 3> <3, 2> <3, 3>

Заметим, что первая, третья и четвертая, а также вторая и пятая строки последнего столбца таблицы содержат одинаковые пары. Поэтому получим:

s r = {<1, 2>, <1, 3>, <3, 2>, <3, 3>}.

Свойства отношений

Определение 2.9. Отношение r называется рефлексивным на множестве X , если для любого x Î X выполняется xr x .

Из определения следует, что всякий элемент < x , x > Î r .

Пример 2.15 .

а) Пусть X – конечное множество, X = {1, 2, 3} и r = {<1, 1>, <1, 2>, <2, 2>, <3, 1>, <3, 3>}. Отношение r рефлексивно. Если X – конечное множество, то главная диагональ матрицы рефлексивного отношения содержит только единицы. Для нашего примера

б) Пусть X r отношение равенства. Это отношение рефлексивно, т.к. каждое число равно самому себе.

в) Пусть X – множество людей и r отношение "жить в одном городе". Это отношение рефлексивно, т.к. каждый живет в одном городе сам с собой.

Определение 2.10. Отношение r называется симметричным на множестве X , если для любых x , y Î X из xry следует yr x .

Очевидно, что r симметрично тогда и только тогда, когда r = r – 1 .

Пример 2.16 .

а) Пусть X – конечное множество, X = {1, 2, 3} и r = {<1, 1>, <1, 2>, <1, 3>, <2, 1>, <3, 1>, <3, 3>}. Отношение r симметрично. Если X – конечное множество, то матрица симметричного отношения симметрична относительно главной диагонали. Для нашего примера

б) Пусть X – множество действительных чисел и r отношение равенства. Это отношение симметрично, т.к. если x равно y , то и y равно x .

в) Пусть X – множество студентов и r отношение "учиться в одной группе". Это отношение симметрично, т.к. если x учится в одной группе с y , то и y учится в одной группе с x .

Определение 2.11. Отношение r называется транзитивным на множестве X , если для любых x , y , z Î X из xry и yr z следует xr z .

Одновременное выполнение условий xry , yr z , xr z означает, что пара <x , z > принадлежит композиции r r . Поэтому для транзитивности r необходимо и достаточно, чтобы множество r r являлось подмножеством r , т. е. r r Í r .

Пример 2.17 .

а) Пусть X – конечное множество, X = {1, 2, 3} и r = {<1, 1>, <1, 2>, <2, 3>, <1, 3>}. Отношение r транзитивно, т. к. наряду с парами <x , y >и <y , z >имеется пара<x , z >. Например, наряду с парами <1, 2>, и <2, 3> имеется пара <1, 3>.

б) Пусть X – множество действительных чисел и r отношение £ (меньше или равно). Это отношение транзитивно, т.к. если x £ y и y £ z , то x £ z .

в) Пусть X – множество людей и r отношение "быть старше". Это отношение транзитивно, т.к. если x старше y и y старше z , то x старше z .

Определение 2.12. Отношение r называется отношением эквивалентности на множестве X , если оно рефлексивно, симметрично и транзитивно на множестве X .

Пример 2.18 .

а) Пусть X – конечное множество, X = {1, 2, 3} и r = {<1, 1>, <2, 2>, <3, 3>}. Отношение r является отношением эквивалентности.

б) Пусть X – множество действительных чисел и r отношение равенства. Это отношение эквивалентности.

в) Пусть X – множество студентов и r отношение "учиться в одной группе". Это отношение эквивалентности.

Пусть r X .

Определение 2.13. Пусть r – отношение эквивалентности на множестве X и x Î X . Классом эквивалентности , порожденным элементом x , называется подмножество множества X , состоящее из тех элементов y Î X , для которых xry . Класс эквивалентности, порожденный элементом x , обозначается через [x ].

Таким образом, [x ] = {y Î X | xry }.

Классы эквивалентности образуют разбиение множества X , т. е. систему непустых попарно непересекающихся его подмножеств, объединение которых совпадает со всем множеством X .

Пример 2.19 .

а) Отношение равенства на множестве целых чисел порождает следующие классы эквивалентности: для любого элемента x из этого множества [x ] = {x }, т.е. каждый класс эквивалентности состоит из одного элемента.

б) Класс эквивалентности, порожденный парой <x , y > определяется соотношением:

[<x , y >] = .

Каждый класс эквивалентности, порожденный парой <x , y >, определяет одно рациональное число.

в) Для отношения принадлежности к одной студенческой группе классом эквивалентности является множество студентов одной группы.

Определение 2.14. Отношение r называется антисимметричным на множестве X , если для любых x , y Î X из xry и yr x следует x = y .

Из определения антисимметричности следует, что всякий раз, когда пара <x , y > принадлежит одновременно r и r – 1 , должно выполняться равенство x = y . Другими словами, r Ç r – 1 состоит только из пар вида < x , x >.

Пример 2.20 .

а) Пусть X – конечное множество, X = {1, 2, 3} и r = {<1, 1>, <1, 2>, <1, 3>, <2, 2>, <2, 3>, <3, 3>}. Отношение r антисимметрично.

Отношение s = {<1, 1>, <1, 2>, <1, 3>, <2, 1>, <2, 3>, <3, 3>} неантисимметрично. Например, <1, 2> Îs, и <2, 1> Îs , но 1 ¹2.

б) Пусть X – множество действительных чисел и r отношение £ (меньше или равно). Это отношение антисимметрично, т.к. если x £ y , и y £ x , то x = y .

Определение 2.15. Отношение r называется отношением частичного порядка (или просто частичным порядком) на множестве X , если оно рефлексивно, антисимметрично и транзитивно на множестве X . Множество X в этом случае называют частично упорядоченным и указанное отношение часто обозначают символом £, если это не приводит к недоразумениям.

Отношение, обратное отношению частичного порядка будет, очевидно, отношением частичного порядка.

Пример 2.21 .

а) Пусть X – конечное множество, X = {1, 2, 3} и r = {<1, 1>, <1, 2>, <1, 3>, <2, 2>, <2, 3>, <3, 3>}. Отношение r

б) Отношение А Í В на множестве подмножеств некоторого множества U есть отношение частичного порядка.

в) Отношение делимости на множестве натуральных чиселесть отношение частичного порядка.

Функции. Основные понятия и определения

В математическом анализе принято следующее определение функции.

Переменная y называется функцией от переменной x , если по некоторому правилу или закону каждому значению x соответствует одно определенное значение y = f (x ). Область изменения переменной x называется областью определения функции, а область изменения переменной y – областью значений функции. Если одному значению x соответствует несколько (и даже бесконечно много значений y ), то функция называется многозначной. Впрочем, в курсе анализа функций действительных переменных избегают многозначных функций и рассматривают однозначные функции.

Рассмотрим другое определение функции с точки зрения отношений.

Определение 2.16. Функцией называется любое бинарное отношение, которое не содержит двух пар с равными первыми компонентами и различными вторыми.

Такое свойство отношения называется однозначностью или функциональностью .

Пример 2.22 .

а) {<1, 2>, <3, 4>, <4, 4>, <5, 6>} – функция.

б) {<x , y >: x , y Î R , y = x 2 } – функция.

в) {<1, 2>, <1, 4>, <4, 4>, <5, 6>} – отношение, но не функция.

Определение 2.17. Если f – функция, то D f область определения , а R f область значений функции f .

Пример 2.23 .

Для примера 2.22 а) D f – {1, 3, 4, 5}; R f – {2, 4, 6}.

Для примера 2.22 б) D f = R f = (–¥, ¥).

Каждому элементу x D f функция ставит в соответствие единственный элемент y R f . Это обозначается хорошо известной записью y = f (x ). Элемент x называется аргументом функции или прообразом элемента y при функции f , а элемент y значением функции f на x или образом элемента x при f .

Итак, из всех отношений функции выделяются тем, что каждый элемент из области определения имеет единственный образ.

Определение 2.18. Если D f = X и R f = Y , то говорят, что функция f определена на X и принимает свои значения на Y , а f называют отображением множества X на Y (X ® Y ).

Определение 2.19. Функции f и g равны, если их область определения – одно и то же множество D , и для любого x Î D справедливо равенство f (x ) = g (x ).

Это определение не противоречит определению равенства функций как равенства множеств (ведь мы определили функцию как отношение, т. е. множество): множества f и g равны, тогда и только тогда, когда они состоят из одних и тех же элементов.

Определение 2.20. Функция (отображение) f называется сюръективной или просто сюръекцией , если ля любого элемента y Y существует элемент x Î X , такой, что y = f (x ).

Таким образом, каждая функция f является сюръективным отображением (сюръекцией) D f ® R f .

Если f – сюръекция, а X и Y – конечные множества, то ³ .

Определение 2.21. Функция (отображение) f называется инъективной или просто инъекцией или взаимно однозначной , если из f (a ) = f (b ) следует a = b .

Определение 2.22. Функция (отображение) f называется биективной или просто биекцией , если она одновременно инъективна и сюръективна.

Если f – биекция, а X и Y – конечные множества, то = .

Определение 2.23. Если область значений функции D f состоит из одного элемента, то f называется функцией-константой .

Пример 2.24 .

а) f (x ) = x 2 есть отображение множества действительных чисел на множество неотрицательных действительных чисел. Т.к. f (–a ) = f (a ), и a ¹ –a , то эта функция не является инъекцией.

б) Для каждого x R = (– , ) функция f (x ) = 5 – функция-константа. Она отображает множество R на множество {5}. Эта функция сюръективна, но не инъективна.

в) f (x ) = 2x + 1 является инъекцией и биекцией, т.к. из 2x 1 +1 = 2x 2 +1 следует x 1 = x 2 .

Определение 2.24. Функция, реализующая отображение X 1 ´ X 2 ´...´ X n ®Y называется n-местной функцией.

Пример 2.25 .

а) Сложение, вычитание, умножение и деление являются двуместными функциями на множестве R действительных чисел, т. е. функциями типа R 2 ® R .

б) f (x , y ) = – двуместная функция, реализующая отображение R ´ (R \ )® R . Эта функция не является инъекцией, т.к. f (1, 2) = f (2, 4).

в) Таблица выигрышей лотереи задает двуместную функцию, устанавливающую соответствие между парами из N 2 (N – множество натуральных чисел) и множеством выигрышей.

Поскольку функции являются бинарными отношениями, то можно находить обратные функции и применять операцию композиции. Композиция любых двух функций есть функция, но не для каждой функции f отношение f –1 является функцией.

Пример 2.26 .

а) f = {<1, 2>, <2, 3>, <3, 4>, <4, 2>} – функция.

Отношение f –1 = {<2, 1>, <3, 2>, <4, 3>, <2, 4>} не является функцией.

б) g = {<1, a >, <2, b >, <3, c >, <4, D >} – функция.

g -1 = {<a , 1>, <b , 2>, <c , 3>, <D , 4>} тоже функция.

в) Найдем композицию функций f из примера а) и g -1 из примера б). Имеем g -1f = {<a , 2>, <b , 3>, <c , 4>, <d , 2>}.

fg -1 = Æ.

Заметим, что (g -1f )(a ) = f (g -1 (a )) = f (1) = 2; (g -1f )(c ) = f (g -1 (c )) = f (3) = 4.

Элементарной функцией в математическом анализе называется всякая функция f , являющаяся композицией конечного числа арифметических функций, а также следующих функций:

1) Дробно-рациональные функции, т.е. функции вида

a 0 + a 1 x + ... + a n x n

b 0 + b 1 x + ... + b m x m .

2) Степенная функция f (x ) = x m , где m – любое постоянное действительное число.

3) Показательная функция f (x ) = e x .

4) логарифмическая функция f (x ) = log a x , a >0, a 1.

5) Тригонометрические функции sin, cos, tg, ctg, sec, csc .

6) Гиперболические функции sh, ch, th, cth .

7) Обратные тригонометрические функции arcsin , arccos и т.д.

Например, функция log 2 (x 3 +sincos 3x ) является элементарной, т.к. она есть композиция функций cosx , sinx , x 3 , x 1 + x 2 , logx , x 2 .

Выражение, описывающее композицию функций, называется формулой.

Для многоместной функции справедлив следующий важный результат, полученный А. Н. Колмогоровым и В. И. Арнольдом в 1957 г. и являющийся решением 13-ой проблемы Гильберта:

Теорема. Всякая непрерывная функция n переменных представима в виде композиции непрерывных функций двух переменных.

Способы задания функций

1. Наиболее простой способ задания функций – это таблицы (табл. 2.2):

Таблица 2.2

Однако, таким образом могут быть заданы функции, определенные на конечных множествах.

Если функция, определенная на бесконечном множестве (отрезке, интервале), задана в конечном числе точек, например, в виде тригонометрических таблиц, таблиц специальных функций и т.п., то для вычисления значений функций в промежуточных точках пользуются правилами интерполяции.

2. Функция может быть задана в виде формулы, описывающей функцию как композицию других функций. Формула задает последовательность вычисления функции.

Пример 2.28 .

f (x ) = sin (x + Öx ) является композицией следующих функций:

g (y ) = Öy ; h (u, v) = u + v; w (z ) = sinz.

3. Функция может быть задана в виде рекурсивной процедуры. Рекурсивная процедура задает функцию, определенную на множестве натуральных чисел, т. е. f (n ), n = 1, 2,... следующим образом: а) задается значение f (1) (или f (0)); б) значение f (n + 1) определяется через композицию f (n ) и других известных функций. Простейшим примером рекурсивной процедуры является вычисление n !: а) 0! = 1; б) (n + 1)! = n !(n + 1). Многие процедуры численных методов являются рекурсивными процедурами.

4. Возможны способы задания функции, не содержащие способа вычисления функции, а только описывающие ее. Например:

f M (x ) =

Функция f M (x ) – характеристическая функция множества M .

Итак, по смыслу нашего определения, задать функцию f – значит задать отображение X ® Y , т.е. определить множество X ´Y , поэтому вопрос сводится к заданию некоторого множества. Однако можно определить понятие функции, не используя языка теории множеств, а именно: функция считается заданной, если задана вычислительная процедура, которая по заданному значению аргумента находит соответствующее значение функции. Функция, определенная таким образом, называется вычислимой.

Пример 2.29 .

Процедура определения чисел Фибоначчи , задается соотношением

F n = F n- 1 + F n- 2 (n ³ 2) (2.1)

с начальными значениями F 0 = 1, F 1 = 1.

Формула (2.1) вместе с начальными значениями определяет следующий ряд чисел Фибоначчи:

n 0 1 2 3 4 5 6 7 8 9 10 11 …
F n 1 1 2 3 5 8 13 21 34 55 89 144 …

Вычислительная процедура определения значения функции по заданному значению аргумента есть не что иное, как алгоритм .

Контрольные вопросы к теме 2

1. Укажите способы задания бинарного отношения.

2. Главная диагональ матрицы какого отношения содержит только единицы?

3. Для какого отношения r всегда выполняется условие r = r – 1 ?

4. Для какого отношения r всегда выполняется условие r r Í r .

5. Ввести отношения эквивалентности и частичного порядка на множестве всех прямых на плоскости.

6. Укажите способы задания функций.

7. Какое из следующих утверждений справедливо?

а) Всякое бинарное отношение есть функция.

б) Всякая функция есть бинарное отношение.

Тема 3. ГРАФЫ

Первая работа по теории графов принадлежащая Эйлеру, появилась в 1736 году. Вначале эта теория была связана с математическими головоломками и играми. Однако впоследствии теория графов стала использоваться в топологии, алгебре, теории чисел. В наше время теория графов находит применение в самых разнообразных областях науки, техники и практической деятельности. Она используется при проектировании электрических сетей, планировании транспортных перевозок, построении молекулярных схем. Применяется теория графов также в экономике, психологии, социологии, биологии.


Человеку присуща потребность в общении, взаимодействии с другими людьми. Удовлетворяя эту потребность, он проявляет и реализует свои возможности.

Человеческая жизнь на всем ее протяжении проявляется, прежде всего, в общении. И все многообразие жизни отражается в столь же бесконечном многообразии общения: в семье, школе, на производстве, в быту, компаниях и т.д.

Общение - одна из универсальных форм активности личности, проявляющаяся в установлении и развитии контактов между людьми, в формировании межличностных отношений и порождаемая потребностями в совместной деятельности.

Общение выполняет целый ряд основных функций :

  • Информационная - функция приема, передачи сведений;
  • Контактная - установление контакта как состояния обоюдной готовности людей к приему и передачи информации;
  • Побудительная - функция стимуляции активности к действию;
  • Координационная - функция взаимного ориентирования и согласования действий;
  • Понимания - предполагает не только прием информации, но и понимание этой информации друг другом;
  • Амотивная - функция возбуждения в партнере нужных эмоций, переживаний, чувств, предполагает эмоциональный обмен, изменение эмоционального состояния;
  • Функция установления отношений - осознание и фиксирование своего социального статуса, социальной роли в конкретной социальной общности.
  • Функция оказания влияния - изменение состояния, поведения, намерений, представлений, установок, мнений, решений, потребностей, действий и т.д.

Наряду с функциями выделяют основные виды общения.

По количеству участников:

  • межличностное;
  • групповое.

По способу общения:

  • вербальное;
  • невербальное.

По положению общающихся:

  • контактное;
  • дистантное.

По условиям общения:

  • официальное;
  • неофициальное.

В структуре общения выделяют три тесно взаимосвязанные, взаимообусловленные стороны:

  • Перцептивная сторона общения - процесс восприятия друг друга.
  • Коммуникативная сторона общения предполагает передачу информации. При этом необходимо учитывать, что человек высказывает 80% от того, что хочет сказать, слушающий - воспринимает 70% и понимает 60% от сказанного.
  • Интерактивная сторона общения предполагает организацию взаимодействия (согласованность действий, распределение функций и др.).

При организации общения необходимо учитывать, что оно проходит ряд этапов, каждый из которых влияет на его эффективность.

Если один из этапов общения выпадает, эффективность общения резко снижается и существует вероятность не достичь тех целей, которые ставились при организации общения. Умение эффективно достигать поставленных целей в общении называется коммуникабельностью, коммуникативной компетентностью, социальным интеллектом.

  1. Лекция № 1. Множества и операции над ними.
  2. Лекция № 2. Соответствия и функции.
  3. Лекция № 3. Отношения и их свойства.
  4. Лекция № 4. Основные виды отношений.
  5. Лекция № 5. Элементы общей алгебры.
  6. Лекция № 6. Различные виды алгебраических структур.
  7. Лекция № 7. Элементы математической логики.
  8. Лекция № 8. Логические функции.
  9. Лекция № 9. Булевы алгебры.
  10. Лекция № 10. Булевы алгебры и теория множеств.
  11. Лекция № 11. Полнота и замкнутость.
  12. Лекция № 12. Язык логики предикатов.
  13. Лекция № 13. Комбинаторика.
  14. Лекция № 14. Графы: основные понятия и операции.
  15. Лекция № 15. Маршруты, цепи и циклы.
  16. Лекция № 16. Некоторые классы графов и их частей.

РАЗДЕЛ I. МНОЖЕСТВА, ФУНКЦИИ, ОТНОШЕНИЯ.

Лекция № 2. Соответствия и функции.

1. Соответствия.

Определение. Соответствием между множествами А и В называется некоторое подмножество G их декартова произведения: .

Если , то говорят, что соответствует при соответствии . При этом множество всех таких называют областью определения соответствия , а множество соответствующих значений называются областью значений соответствия .

В принятых обозначениях, каждый элемент , соответствующий данному элементу называется образом при соответствии , наоборот, элемент называется прообразом элемента при данном соответствии.

Соответствие называется полностью определённым , если , то есть каждый элемент множества имеет хотя бы один образ во множестве ; в противном случае соответствие называется частичным .

Соответствие называется сюръективным , если , то есть если каждому элементу множества соответствует хотя бы один прообраз во множестве .

Соответствие называется функциональным (однозначным), если любому элементу множества соответствует единственный элемент множества .

Соответствие называется инъективным , если оно является функциональным, и при этом каждый элемент множества имеет не более одного прообраза.

Соответствие называется взаимнооднозначным (биективным), если любому элементу множества соответствует единственный элемент множества , и наоборот. Можно сказать также, что соответствие является взаимнооднозначным, если оно является полностью определённым, сюръективным, функциональным, и при этом каждый элемент множества имеет единственный прообраз.

Пример 1.

а) Англо-русский словарь устанавливает соответствие между множествами слов русского и английского языка. Оно не является функциональным, так как почти каждому русскому слову соответствует несколько английских переводов; оно, также, не является, как правило, полностью определённым соответствием, так как всегда существуют английские слова, не включённые в данный словарь. Таким образом, это частичное соответствие.

б) Соответствие между аргументами функции и значениями этой функции является функциональным. Однако оно не является взаимнооднозначным, так как каждому значению функции соответствуют два прообраза и .

в) Соответствие между расположенными на шахматной доске фигурами и занимаемыми ими полями является взаимно однозначным.

г) Соответствие между телефонами города Вязьмы и их пятизначными номерами обладает, на первый взгляд, всеми свойствами взаимнооднозначного соответствия. Однако оно, например, не сюръективно, поскольку существуют пятизначные числа, не соответствующие никаким телефонам.

2. Взаимнооднозначные соответствия и мощности множеств.

Если между двумя конечными множествами А и В существует взаимнооднозначное соответствие, то эти множества равномощны. Этот очевидный факт позволяет, во-первых, установить равенство мощности этих множеств, не вычисляя их. Во-вторых, часто можно вычислить мощность множества, установив его однозначное соответствие с множеством, мощность которого известна, либо легко вычисляется.

Теорема 2.1. Если мощность конечного множества А равна , то число всех подмножеств А равно , то есть .

Множество всех подмножеств множества М называется булеаном и обозначается . Для конечных множеств выполняется: .

Определение. Множества А и В называются равномощными, если между их элементами можно установить взаимнооднозначное соответствие.

Заметим, что для конечных множеств это утверждение легко доказать. Для бесконечных множеств оно определят само понятие равномощности.

Определение. Множество А называется счётным, если оно равномощно множеству натуральных чисел : .

Очень упрощённо можно сказать, что данное бесконечное множество является счётным, если для его элементов можно установить нумерацию с помощью натуральных чисел.

Без доказательства примем ряд важных фактов:

1. Любое бесконечное подмножество множества натуральных чисел является счётным.

2. Множество является счётным.

3. Множество рациональных чисел является счётным (является следствием из предыдущего утверждения).

4. Объединение конечного числа счётных множеств является счётным.

5. Объединение счётного числа конечных множеств является счётным.

6. Объединение счётного числа счётных множеств является счётным.

Все эти утверждения, как можно видеть, позволяют достаточно успешно устанавливать факт, что данное множество является счётным. Однако сейчас будет показано, что не всякое бесконечное множества является счётным; существует множества большей мощности.

Теорема 2.2 (теорема Кантора). Множество всех действительных чисел из отрезка не является счётным.

Доказательство. Допустим, что множество является счётным и существует его нумерация. Поскольку любое действительное число можно представить в виде бесконечной десятичной дроби (периодической или непериодической), то проделаем это с числами данного множества. Расположим их в порядке этой нумерации:

Теперь рассмотрим любую бесконечную десятичную дробь вида , организованную таким образом, что и так далее. Очевидно, что данная дробь не входит в рассматриваемую последовательность, поскольку от первого числа она отличается первой цифрой после запятой, от второго – второй цифрой и так далее. Следовательно, мы получили число из данного интервала, которое не пронумеровано и, таким образом, множество не является счётным. Его мощность называется континуум , а множества такой мощности называются континуальными . Приведённый метод доказательства называется диагональным методом Кантора .

Следствие 1. Множество действительных чисел континуально.

Следствие 2. Множество всех подмножеств счётного множества континуально.

Как показывается в теории множеств (с помощью метода, аналогичного приведённому выше), для множества любой мощности множество всех его подмножеств (булеан) имеет более высокую мощность. Поэтому не существует множества максимальной мощности. Например, множество-универсум , описанное Кантором должно содержать все мыслимые множества, однако оно само содержится в множестве своих подмножеств в качестве элемента (парадокс Кантора). Получается, что множество не является множеством максимальной мощности.

3. Отображения и функции.

Функцией называется любое функциональное соответствие между двумя множествами. Если функция устанавливает соответствие между множествами А и В, то говорят, что функция имеет вид (обозначение ). Каждому элементу из своей области определения функция ставит в соответствие единственный элемент из области значений. Это записывается в традиционной форме . Элемент называется аргументом функции, элемент - её значением .

Полностью определённая функция называется отображением А в В; образ множества А при отображении обозначается . Если при этом , то есть соответствие сюръективно, говорят, что имеет отображение А на В.

Если состоит из единственного элемента, то называется функцией-константой.

Отображение типа называется преобразованием множества А.

Пример 2.

а) Функция является отображением множества натуральных чисел в себя (инъективная функция). Эта же функция при всех является отображением множества целых чисел в множество рациональных чисел.

б) Функция является отображением множества целых чисел (кроме числа 0) на множество натуральных чисел. Причём в данном случае соответствие не является взаимно однозначным.

в) Функция является взаимнооднозначным отображением множества действительных чисел на себя.

г) Функция не полностью определена, если её тип , но полностью определена, если её тип или .

Определение. Функция типа называется местной функцией. В этом случае принято считать, что функция имеет аргументов: , где .

Например, сложение, умножение, вычитание и деление являются двухместными функциями на , то есть функциями типа .

Определение. Пусть дано соответствие . Если соответствие таково, что тогда и только тогда, когда , то соответствие называют обратным к и обозначают .

Определение. Если соответствие, обратное к функции является функциональным, то оно называется функцией, обратной к .

Очевидно, что в обратном соответствии образы и прообразы меняются местами, поэтому для существования обратной функции требуется, чтобы каждый элемент из области значения имел бы единственный прообраз. Это означает, что для функции обратная функция существует тогда и только тогда, когда является биективным соответствием между своей областью определения и областью значений.

Пример 3. Функция имеет тип . Отрезок она взаимно однозначно отображает на отрезок . Поэтому для неё на отрезке существует обратная функция. Как известно, это .

Определение. Пусть даны функции и . Функция называется композицией функций и (обозначается ), если имеет место равенство: , где .

Композиция функций и представляет собой последовательное применение этих функций; применяется к результату .Часто говорят, что функция получена подстановкой в .

Для многоместных функций возможны различные варианты подстановок в , дающие функции различных типов. Особый интерес представляет случай, когда задано множество функций типа: . В этом случае возможны, во-первых, любые подстановки функций друг в друга, а во-вторых, любые переименования аргументов. Функция, полученная из данных функций некоторой подстановкой их друг в друга и переименованием аргументов, называется их суперпозицией.

Например, в математическом анализе вводится понятие элементарной функции, являющейся суперпозицией фиксированного (не зависящего от значения аргумента) числа арифметических операций, а также элементарных функций ( и т. п.).

А.Н. Колмогоровым и В.И. Арнольдом доказано, что всякая непрерывная функция переменных представима в виде суперпозиции непрерывных функций двух переменных.

Замечание. Понятие функции широко используется в математическом анализе, более того, является в нём базовым понятием. В целом, подход к пониманию термина “функция” в матанализе несколько уже, чем в дискретной математике. Как правило, в нём рассматриваются так называемые вычислимые функции. Функция называется вычислимой, если задана процедура, позволяющая по любому заданному значению аргумента найти значение функции.

Назад, в начало конспекта.

Пример 1.

а) Отношение равенства (часто обозначается ) на любом множестве является отношением эквивалентности. Равенство – это минимальное отношение эквивалентности в том смысле, что при удалении любой пары из этого отношения (то есть любой единицы на главной диагонали матрицы ) оно перестаёт быть рефлексивным и, следовательно, уже не является эквивалентностью.

б) Утверждения вида или , состоящие из формул, соединённых знаком равенства, задают бинарное отношение на множестве формул, описывающих суперпозиции элементарных функций. Это отношение обычно называется отношением равносильности и определяется следующим образом: две формулы равносильны, если они задают одну и ту же функцию. Равносильность в данном случае, хотя и обозначена знаком “=”, означает не то же самое, что отношение равенства, так как оно может выполняться для различных формул. Впрочем, можно считать, что знак равенства в таких отношениях относится не к самим формулам, а к функциям, которые ими описываются. Для формул же отношение равенства – это совпадение формул по написанию. Оно называется графическим равенством. Кстати, чтобы в подобных ситуациях избежать разночтений, часто для обозначения отношения равносильности используют знак “ ”.

в) Рассмотрим множество треугольников на координатной плоскости, считая, что треугольник задан, если даны координаты его вершин. Два треугольника будем считать равными (конгруэнтными), если при наложении они совпадают, то есть, переведены друг в друга с помощью некоторого перемещения. Равенство является отношением эквивалентности на множестве треугольников.

г) Отношение “иметь один и тот же остаток отделения на натуральное число ” на множестве натуральных чисел является отношением эквивалентности.

е) Отношение “быть делителем” не является на множестве отношением эквивалентности. Оно обладает свойствами рефлексивности и транзитивности, но является антисимметричным (см. ниже).

Пусть на множестве задано отношение эквивалентности . Осуществим следующее построение. Выберем элемент и образуем класс (подмножество ), состоящий из элемента и всех элементов, эквивалентных ему в рамках данного отношения. Затем выберем элемент и образуем класс , состоящий из и эквивалентных ему элементов. Продолжая эти действия, получим систему классов (возможно, бесконечную) такую, что любой элемент из множества входит хотя бы в один класс, то есть .

Эта система обладает следующими свойствами:

1) она образует разбиение множества , то есть классы попарно не пересекаются;

2) любые два элемента из одного класса эквивалентны;

3) любые два элемента из разных классов не эквивалентны.

Все эти свойства прямо следуют из определения отношения эквивалентности. Действительно, если бы, например, классы и пресекались, то они имели бы хотя бы один общий элемент. Этот элемент был бы, очевидно, эквивалентен и . Тогда, в силу транзитивности отношения выполнялось бы . Однако, по способу построения классов, это не возможно. Аналогично можно доказать другие два свойства.

Построенное разбиение, то есть система классов – подмножеств множества , называется системой классов эквивалентности по отношению . Мощность этой системы называется индексом разбиения . С другой стороны, любое разбиение множества на классы само определяет некоторое отношение эквивалентности, а именно отношение “входить в один класс данного разбиения”.

Пример 2.

а) Все классы эквивалентности по отношению равенства состоят из одного элемента.

б) Формулы, описывающие одну и ту же элементарную функцию, находятся в одном классе эквивалентности по отношению равносильности. В данном случае счётными являются само множество формул, множество классов эквивалентности (то есть индекс разбиения) и каждый класс эквивалентности.

в) Разбиение множества треугольников по отношению равенства имеет континуальный индекс, причём каждый класс имеет также мощность континуум.

г) Разбиение множества натуральных чисел по отношению “иметь общий остаток при делении на 7” имеет конечный индекс 7 и состоит из семи счётных классов.

  1. Отношения порядка.

Определение 1. Отношение называется отношением нестрогого порядка , если оно является рефлексивным, антисимметричным и транзитивным.

Определение 2. Отношение называется отношением строгого порядка , если оно является антирефлексивным, антисимметричным и транзитивным.

Оба типа отношений вместе называются отношениями порядка . Элементы сравнимы по отношению порядка , если выполняется одно из двух отношений или . Множество , на котором задано отношение порядка, называется полностью упорядоченным, если любые два его элемента сравнимы. В противном случае, множество называется частично упорядоченным.

Пример 3.

а) Отношения “ ” и “ ” являются отношениями нестрогого порядка, отношения “<” и “>” – отношениями строгого порядка (на всех основных числовых множествах). Оба отношения полностью упорядочивают множества и .

б) Определим отношения “ ” и “<” на множестве следующим образом:

1) , если ;

2) , если и при этом ходя бы для одной координаты выполняется .

Тогда, например, , но и несравнимы. Таким образом, эти отношения частично упорядочивают .,

в) На системе подмножеств множества отношение включения “ ” задаёт нестрогий частичный порядок, а отношение строгого включения “ ” задаёт строгий частичный порядок. Например, , а и не сравнимы.

г) Отношение подчинённости в трудовом коллективе создаёт строгий частичный порядок. В нём, например, несравнимыми являются сотрудники различных структурных подразделений (отделов и т. п.).

д) В алфавите русского языка порядок букв зафиксирован, то есть всегда один и тот же. Тогда этот список определяет полное упорядочение букв, которое называется отношением предшествования. Обозначается ( предшествует ). На основании отношения предшествования букв построено отношение предшествования слов, определяемое примерно, таким образом, как производится сравнение двух десятичных дробей. Это отношение задаёт полное упорядочение слов в русском алфавите, которое называется лексикографическим упорядочением.

Пример 4.

а) Наиболее известным примером лексикографического упорядочения слов является упорядочение слов в словарях. Например, (так как ), поэтому слово лес расположено в словаре раньше слова лето .

б) Если рассматривать числа в позиционных системах счисления (например, в десятичной системе) как слова в алфавите цифр, то их лексикографическое упорядочение совпадает с обычным, если все сравниваемые числа имеют одинаковое количество разрядов. В общем же случае эти два вида могут не совпадать. Например, и , но , а . Для того, чтобы они совпадали, нужно уравнять число разрядов у всех сравниваемых чисел, приписывая слева нули. В данном примере при этом получим . Такое выравнивание происходит автоматически при записи целых чисел в ЭВМ.

в) Лексикографическое упорядочивание цифровых представлений дат вида 19.07.2004 (девятнадцатое июля две тысячи четвёртого года) не совпадает с естественным упорядочением дат от более ранних к более поздним. Например, дата 19.07.2004 “лексикографически” старше восемнадцатого числа любого года. Чтобы возрастание дат совпадало с лексикографическим упорядочением, обычное представление надо “перевернуть”, то есть записать в виде 2004.07.19. так обычно делают при представлении дат в памяти ЭВМ.